Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Animals (Basel) ; 14(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38929391

ABSTRACT

Bird feathers have several functions, including flight, insulation, communication, and camouflage. Since feathers degrade over time, birds need to moult regularly to maintain these functions. However, environmental factors like food scarcity, stress, and parasite infections can affect feather quality and moult speed. This study examined the impact of avian haemosporidian infection and uropygial gland volume, as well as feather quality and feather growth rate in two migratory hirundine species captured in southwestern Spain-the house martin (Delichon urbicum) and sand martin (Riparia riparia). Our findings showed that the prevalence of infection varied among species, with house martins having the highest rates, possibly due to their larger colony size. Moreover, haemosporidian infection had a different impact on each species; infected house martins exhibited lower feather quality than healthy individuals, although this outcome was not observed in sand martins. Furthermore, no effect of infection on feather growth rate was observed in both hirundinids. Additionally, feather growth rate only correlated positively with feather quality in house martins. Finally, no link was observed between uropygial gland volume and feather quality or feather growth rate in any of the species in this study. These findings highlight the effect of haemosporidian infections on the plumage of migratory birds, marking, for the first time, how avian haemosporidian infection is shown to adversely impact feather quality. Even so, further research is needed to explore these relationships more deeply.

2.
Mol Ecol ; 32(4): 904-919, 2023 02.
Article in English | MEDLINE | ID: mdl-36448733

ABSTRACT

Plasmodium relictum is the most widespread avian malaria parasite in the world. It is listed as one of the 100 most dangerous invasive species, having been responsible for the extinction of several endemic bird species, and the near-demise of several others. Here we present the first transcriptomic study focused on the effect of P. relictum on the immune system of its vector (the mosquito Culex quinquefasciatus) at different times post-infection. We show that over 50% of immune genes identified as being part of the Toll pathway and 30%-40% of the immune genes identified within the Imd pathway are overexpressed during the critical period spanning the parasite's oocyst and sporozoite formation (8-12 days), revealing the crucial role played by both these pathways in this natural mosquito-Plasmodium combination. Comparison of infected mosquitoes with their uninfected counterparts also revealed some unexpected immune RNA expression patterns earlier and later in the infection: significant differences in expression of several immune effectors were observed as early as 30 min after ingestion of the infected blood meal. In addition, in the later stages of the infection (towards the end of the mosquito lifespan), we observed an unexpected increase in immune investment in uninfected, but not in infected, mosquitoes. In conclusion, our work extends the comparative transcriptomic analyses of malaria-infected mosquitoes beyond human and rodent parasites and provides insights into the degree of conservation of immune pathways and into the selective pressures exerted by Plasmodium parasites on their vectors.


Subject(s)
Culex , Malaria, Avian , Plasmodium , Animals , Humans , Malaria, Avian/genetics , Malaria, Avian/parasitology , Culex/genetics , Mosquito Vectors/genetics , Plasmodium/genetics , Gene Expression
3.
BMC Ecol Evol ; 22(1): 73, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35655150

ABSTRACT

BACKGROUND: Hosts are often simultaneously infected with several parasite species. These co-infections can lead to within-host interactions of parasites, including mutualism and competition, which may affect both virulence and transmission. Birds are frequently co-infected with different haemosporidian parasites, but very little is known about if and how these parasites interact in natural host populations and what consequences there are for the infected hosts. We therefore set out to study Plasmodium and Haemoproteus parasites in house sparrows Passer domesticus with naturally acquired infections using a protocol where the parasitemia (infection intensity) is quantified by qPCR separately for the two parasites. We analysed infection status (presence/absence of the parasite) and parasitemia of parasites in the blood of both adult and juvenile house sparrows repeatedly over the season. RESULTS: Haemoproteus passeris and Plasmodium relictum were the two dominating parasite species, found in 99% of the analyzed Sanger sequences. All birds were infected with both Plasmodium and Haemoproteus parasites during the study period. Seasonality explained infection status for both parasites in the adults: H. passeris was completely absent in the winter while P. relictum was present all year round. Among adults infected with H. passeris there was a positive effect of P. relictum parasitemia on H. passeris parasitemia and likewise among adults infected with P. relictum there was a positive effect of H. passeris parasitemia on P. relictum parasitemia. No such associations on parasitemia were seen in juvenile house sparrows. CONCLUSIONS: The reciprocal positive relationships in parasitemia between P. relictum and H. passeris in adult house sparrows suggests either mutualistic interactions between these frequently occurring parasites or that there is variation in immune responses among house sparrow individuals, hence some individuals suppress the parasitemia of both parasites whereas other individuals suppress neither. Our detailed screening of haemosporidian parasites over the season shows that co-infections are very frequent in both juvenile and adult house sparrows, and since co-infections often have stronger negative effects on host fitness than the single infection, it is imperative to use screening systems with the ability to detect multiple parasites in ecological studies of host-parasite interactions.


Subject(s)
Coinfection , Haemosporida , Malaria, Avian , Parasites , Plasmodium , Sparrows , Animals , Coinfection/epidemiology , Humans , Malaria, Avian/epidemiology , Parasitemia/veterinary , Sparrows/parasitology
4.
Biology (Basel) ; 11(5)2022 May 09.
Article in English | MEDLINE | ID: mdl-35625454

ABSTRACT

Vector-borne infectious diseases (e.g., malaria, dengue fever, and yellow fever) result from a parasite transmitted to humans and other animals by blood-feeding arthropods. They are major contributors to the global disease burden, as they account for nearly a fifth of all infectious diseases worldwide. The interaction between vectors and their hosts plays a key role driving vector-borne disease transmission. Therefore, identifying factors governing host selection by blood-feeding insects is essential to understand the transmission dynamics of vector-borne diseases. Here, we review published information on the physical and chemical stimuli (acoustic, visual, olfactory, moisture and thermal cues) used by mosquitoes and other haemosporidian vectors to detect their vertebrate hosts. We mainly focus on studies on avian malaria and related haemosporidian parasites since this animal model has historically provided important advances in our understanding on ecological and evolutionary process ruling vector-borne disease dynamics and transmission. We also present relevant studies analysing the capacity of feather and skin symbiotic bacteria in the production of volatile compounds with vector attractant properties. Furthermore, we review the role of uropygial secretions and symbiotic bacteria in bird-insect vector interactions. In addition, we present investigations examining the alterations induced by haemosporidian parasites on their arthropod vector and vertebrate host to enhance parasite transmission. Finally, we propose future lines of research for designing successful vector control strategies and for infectious disease management.

5.
Curr Zool ; 68(1): 27-40, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35169627

ABSTRACT

Characterizing the diversity and structure of host-parasite communities is crucial to understanding their eco-evolutionary dynamics. Malaria and related haemosporidian parasites are responsible for fitness loss and mortality in bird species worldwide. However, despite exhibiting the greatest ornithological biodiversity, avian haemosporidians from Neotropical regions are quite unexplored. Here, we analyze the genetic diversity of bird haemosporidian parasites (Plasmodium and Haemoproteus) in 1,336 individuals belonging to 206 bird species to explore for differences in diversity of parasite lineages and bird species across 5 well-differentiated Peruvian ecoregions. We detected 70 different haemosporidian lineages infecting 74 bird species. We showed that 25 out of the 70 haplotypes had not been previously recorded. Moreover, we also identified 81 new host-parasite interactions representing new host records for these haemosporidian parasites. Our outcomes revealed that the effective diversity (as well as the richness, abundance, and Shannon-Weaver index) for both birds and parasite lineages was higher in Amazon basin ecoregions. Furthermore, we also showed that ecoregions with greater diversity of bird species also had high parasite richness, hence suggesting that host community is crucial in explaining parasite richness. Generalist parasites were found in ecoregions with lower bird diversity, implying that the abundance and richness of hosts may shape the exploitation strategy followed by haemosporidian parasites. These outcomes reveal that Neotropical region is a major reservoir of unidentified haemosporidian lineages. Further studies analyzing host distribution and specificity of these parasites in the tropics will provide important knowledge about phylogenetic relationships, phylogeography, and patterns of evolution and distribution of haemosporidian parasites.

6.
Parasit Vectors ; 12(1): 548, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31753041

ABSTRACT

BACKGROUND: Avian malaria parasites are a highly diverse group that commonly infect birds and have deleterious effects on their hosts. Some parasite lineages are geographically widespread and infect many host species in many regions. Bird migration, natural dispersal, invasive species and human-mediated introductions into areas where competent insect vectors are present, are probably the main drivers of the current distribution of avian malaria parasites. METHODS: A total of 412 and 2588 wild house sparrows (Passer domesticus) were captured in 2012 and 2013 in two areas of the Iberian Peninsula (central and southern Spain, respectively). Genomic DNA was extracted from blood samples; parasite lineages were sequenced and identified by comparing with GenBank and/or MalAvi databases. RESULTS: Thirteen Plasmodium lineages were identified in house sparrows corresponding to three major clades. Five individuals were infected by the African Plasmodium lineage PAGRI02, which has been proposed to actively circulate only in Africa. CONCLUSIONS: Despite the low prevalence of PAGRI02 in sparrows in Spain, our results suggest that the area of transmission of this parasite is more widespread than previously thought and covers both Africa and Europe. Further studies of the global distribution of Plasmodium lineages infecting wild birds are required to identify the current transmission areas of these parasites. This is vital given the current scenario of global change that is providing new opportunities for avian malaria transmission into areas where parasites were previously absent.


Subject(s)
Bird Diseases/transmission , Disease Transmission, Infectious , Genotype , Malaria/veterinary , Plasmodium/classification , Plasmodium/genetics , Sparrows , Africa , Animals , Bird Diseases/parasitology , DNA, Protozoan/chemistry , DNA, Protozoan/genetics , Malaria/parasitology , Malaria/transmission , Molecular Epidemiology , Plasmodium/isolation & purification , Prevalence , Sequence Analysis, DNA , Spain
7.
PLoS One ; 14(3): e0205624, 2019.
Article in English | MEDLINE | ID: mdl-30840636

ABSTRACT

Parasites are a selective force that shape host community structure and dynamics, but host communities can also influence parasitism. Understanding the dual nature from host-parasite interactions can be facilitated by quantifying the variation in parasite prevalence among host species and then comparing that variation to other ecological factors that are known to also shape host communities. Avian haemosporidian parasites (e.g. Plasmodium and Haemoproteus) are abundant and widespread representing an excellent model for the study of host-parasite interactions. Several geographic and environmental factors have been suggested to determine prevalence of avian haemosporidians in bird communities. However, it remains unknown whether host and parasite traits, represented by phylogenetic distances among species and degree of specialization in host-parasite relationships, can influence infection status. The aims of this study were to analyze factors affecting infection status in a bird community and to test whether the degree of parasite specialization on their hosts is determined by host traits. Our statistical analyses suggest that infection status is mainly determined by the interaction between host species and parasite lineages where tolerance and/or susceptibility to parasites plays an essential role. Additionally, we found that although some of the parasite lineages infected a low number of bird individuals, the species they infected were distantly related and therefore the parasites themselves should not be considered typical host specialists. Infection status was higher for generalist than for specialist parasites in some, but not all, host species. These results suggest that detected prevalence in a species mainly results from the interaction between host immune defences and parasite exploitation strategies wherein the result of an association between particular parasite lineages and particular host species is idiosyncratic.


Subject(s)
Bird Diseases/epidemiology , Birds/parasitology , Genetic Variation , Haemosporida/pathogenicity , Host-Parasite Interactions , Plasmodium/pathogenicity , Protozoan Infections/epidemiology , Animals , Bird Diseases/parasitology , Haemosporida/genetics , Host Specificity , Malaria, Avian/epidemiology , Malaria, Avian/parasitology , Phylogeny , Prevalence , Protozoan Infections/parasitology , Spain/epidemiology
8.
Parasit Vectors ; 9: 232, 2016 Apr 25.
Article in English | MEDLINE | ID: mdl-27114098

ABSTRACT

BACKGROUND: Animals have developed a wide range of defensive mechanisms against parasites to reduce the likelihood of infection and its negative fitness costs. The uropygial gland is an exocrine gland that produces antimicrobial and antifungal secretions with properties used as a defensive barrier on skin and plumage. This secretion has been proposed to affect the interaction between avian hosts and their ectoparasites. Because uropygial secretions may constitute a defense mechanism against ectoparasites, this may result in a reduction in prevalence of blood parasites that are transmitted by ectoparasitic vectors. Furthermore, other studies pointed out that vectors could be attracted by uropygial secretions and hence increase the probability of becoming infected. Here we explored the relationship between uropygial gland size, antimicrobial activity of uropygial secretions and malaria infection in house sparrows Passer domesticus. METHODS: A nested-PCR was used to identify blood parasites infection. Flow cytometry detecting absolute cell counting assessed antimicrobial activity of the uropygial gland secretion RESULTS: Uninfected house sparrows had larger uropygial glands and higher antimicrobial activity in uropygial secretions than infected individuals. We found a positive association between uropygial gland size and scaled body mass index, but only in uninfected sparrows. Female house sparrows had larger uropygial glands and higher antimicrobial activity of gland secretions than males. CONCLUSION: These findings suggest that uropygial gland secretions may play an important role as a defensive mechanism against malaria infection.


Subject(s)
Anti-Infective Agents/metabolism , Bodily Secretions/metabolism , Malaria, Avian/parasitology , Sparrows , Animals , Female , Male , Sex Factors
9.
Parasitol Res ; 114(12): 4493-501, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26337268

ABSTRACT

Escape behaviour is the behaviour that birds and other animals display when already caught by a predator. An individual exhibiting higher intensity of such anti-predator behaviour could have greater probabilities of escape from predators. Parasites are known to affect different aspects of host behaviour to increase their own fitness. Vector-transmitted parasites such as malaria parasites should gain by manipulating their hosts to enhance the probability of transmission. Several studies have shown that malaria parasites can manipulate their vectors leading to increased transmission success. However, little is known about whether malaria parasites can manipulate escape behaviour of their avian hosts thereby increasing the spread of the parasite. Here we used an experimental approach to explore if Plasmodium relictum can manipulate the escape behaviour of one of its most common avian hosts, the house sparrow Passer domesticus. We experimentally tested whether malaria parasites manipulate the escape behaviour of their avian host. We showed a decrease in the intensity of biting and tonic immobility after removal of infection with anti-malaria medication compared to pre-experimental behaviour. These outcomes suggest that infected sparrows performed more intense escape behaviour, which would increase the likelihood of individuals escaping from predators, but also benefit the parasite by increasing its transmission opportunities.


Subject(s)
Bird Diseases/psychology , Birds/parasitology , Malaria, Avian/psychology , Plasmodium/physiology , Animals , Behavior, Animal , Bird Diseases/parasitology , Bird Diseases/physiopathology , Birds/physiology , Escape Reaction , Female , Malaria, Avian/parasitology , Malaria, Avian/physiopathology , Male
10.
Parasitology ; 142(9): 1215-20, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25968571

ABSTRACT

The identification of the regions where vector-borne diseases are transmitted is essential to study transmission patterns and to recognize future changes in environmental conditions that may potentially influence the transmission areas. SGS1, one of the lineages of Plasmodium relictum, is known to have active transmission in tropical Africa and temperate regions of Europe. Nuclear sequence data from isolates infected with SGS1 (based on merozoite surface protein 1 (MSP1) allelic diversity) have provided new insights on the distribution and transmission areas of these allelic variants. For example, MSP1 alleles transmitted in Africa differ from those transmitted in Europe, suggesting the existence of two populations of SGS1 lineages. However, no study has analysed the distribution of African and European transmitted alleles in Afro-Palearctic migratory birds. With this aim, we used a highly variable molecular marker to investigate whether juvenile house martins become infected in Europe before their first migration to Africa. We explored the MSP1 allelic diversity of P. relictum in adult and juvenile house martins. We found that juveniles were infected with SGS1 during their first weeks of life, confirming active transmission of SGS1 to house martins in Europe. Moreover, we found that all the juveniles and most of adults were infected with one European transmitted MSP1 allele, whereas two adult birds were infected with two African transmitted MSP1 alleles. These findings suggest that house martins are exposed to different strains of P. relictum in their winter and breeding quarters.


Subject(s)
Animal Migration/physiology , Malaria, Avian/parasitology , Passeriformes , Plasmodium/classification , Alleles , Animals , Gene Expression Regulation/physiology , Malaria, Avian/epidemiology , Phylogeography , Plasmodium/genetics , Plasmodium/isolation & purification , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Species Specificity
11.
Malar J ; 13: 239, 2014 Jun 18.
Article in English | MEDLINE | ID: mdl-24943514

ABSTRACT

BACKGROUND: Malaria parasites need to synthesize chitinase in order to go through the peritrophic membrane, which is created around the mosquito midgut, to complete its life cycle. In mammalian malaria species, the chitinase gene comprises either a large or a short copy. In the avian malaria parasites Plasmodium gallinaceum both copies are present, suggesting that a gene duplication in the ancestor to these extant species preceded the loss of either the long or the short copy in Plasmodium parasites of mammals. Plasmodium gallinaceum is not the most widespread and harmful parasite of birds. This study is the first to search for and identify the chitinase gene in one of the most prevalent avian malaria parasites, Plasmodium relictum. METHODS: Both copies of P. gallinaceum chitinase were used as reference sequences for primer design. Different sequences of Plasmodium spp. were used to build the phylogenetic tree of chitinase gene. RESULTS: The gene encoding for chitinase was identified in isolates of two mitochondrial lineages of P. relictum (SGS1 and GRW4). The chitinase found in these two lineages consists both of the long (PrCHT1) and the short (PrCHT2) copy. The genetic differences found in the long copy of the chitinase gene between SGS1 and GRW4 were higher than the difference observed for the cytochrome b gene. CONCLUSION: The identification of both copies in P. relictum sheds light on the phylogenetic relationship of the chitinase gene in the genus Plasmodium. Due to its high variability, the chitinase gene could be used to study the genetic population structure in isolates from different host species and geographic regions.


Subject(s)
Chitinases/genetics , Chitinases/metabolism , Plasmodium/enzymology , Animals , Birds/parasitology , Cluster Analysis , DNA, Protozoan/chemistry , DNA, Protozoan/genetics , Genes, Protozoan , Molecular Sequence Data , Phylogeny , Plasmodium/genetics , Sequence Analysis, DNA , Sequence Homology
12.
Oecologia ; 171(4): 853-61, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22961369

ABSTRACT

Carry-over effects take place when events occurring in one season influence individual performance in a subsequent season. Blood parasites (e.g. Plasmodium and Haemoproteus) have strong negative effects on the body condition of their hosts and could slow the rate of feather growth on the wintering grounds. In turn, these winter moult costs could reduce reproductive success in the following breeding season. In house martins Delichon urbica captured and studied at a breeding site in Europe, we used ptilochronology to measure growth rate of tail feathers moulted on the winter range in Africa, and assessed infection status of blood parasites transmitted on the wintering grounds. We found a negative association between haemosporidian parasite infection status and inferred growth rate of tail feathers. A low feather growth rate and blood parasite infections were related to a delay in laying date in their European breeding quarters. In addition, clutch size and the number of fledglings were negatively related to a delayed laying date and blood parasite infection. These results stress the importance of blood parasites and feather growth rate as potentially mechanisms driving carry-over effects to explain fitness differences in wild populations of migratory birds.


Subject(s)
Bird Diseases/parasitology , Feathers/growth & development , Host-Parasite Interactions/physiology , Malaria/veterinary , Passeriformes , Reproduction/physiology , Seasons , Analysis of Variance , Animals , Haemosporida/physiology , Malaria/physiopathology , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...