Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 12(23)2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31810167

ABSTRACT

The curing of composite materials is one of the parameters that most affects their mechanical behavior. The inspection methods used do not always allow a correct characterization of the curing state of the thermosetting resins. In this work, Raman spectroscopy technology is used for measuring the degree of cure. The results are compared with conventional thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), and scanning electron microscope (SEM). Carbon fiber specimens manufactured with technologies out of autoclave (OoA) have been used, with an epoxy system Prepreg System, SE 84LV. The results obtained with Raman technology show that it is possible to verify the degree of polymerization, and the information is complementary from classical thermal characterization techniques such as TGA and DSC; thus, it is possible to have greater control in curing and improving the quality of the manufactured parts.

2.
Materials (Basel) ; 11(8)2018 Jul 30.
Article in English | MEDLINE | ID: mdl-30061503

ABSTRACT

In OECD (Organization for Economic Co-operation and Development) countries, cancer is one of the main causes of death, lung cancer being one of the most aggressive. There are several techniques for the treatment of lung cancer, among which radiotherapy is one of the most effective and least invasive for the patient. However, it has associated difficulties due to the moving target tumor. It is possible to reduce the side effects of radiotherapy by effectively tracking a tumor and reducing target irradiation margins. This paper presents a custom electromechanical system that follows the movement of a lung tumor. For this purpose, a hysteresis loop of human lung movement during breathing was studied to obtain its characteristic movement equation. The system is controlled by an Arduino, steppers motors and a customized 3D printed mechanism to follow the characteristic human breathing, obtaining an accurate trajectory. The developed device helps the verification of individualized radiation treatment plans and permits the improvement of radiotherapy quality assurance procedures.

3.
Materials (Basel) ; 11(9)2018 Aug 25.
Article in English | MEDLINE | ID: mdl-30149609

ABSTRACT

In biology and neuroscience courses, brain anatomy is usually explained using Magnetic Resonance (MR) images or histological sections of different orientations. These can show the most important macroscopic areas in an animals' brain. However, this method is neither dynamic nor intuitive. In this work, an anatomical 3D printed rat brain with educative purposes is presented. Hand manipulation of the structure, facilitated by the scale up of its dimensions, and the ability to dismantle the "brain" into some of its constituent parts, facilitates the understanding of the 3D organization of the nervous system. This is an alternative method for teaching students in general and biologists in particular the rat brain anatomy. The 3D printed rat brain has been developed with eight parts, which correspond to the most important divisions of the brain. Each part has been fitted with interconnections, facilitating assembling and disassembling as required. These solid parts were smoothed out, modified and manufactured through 3D printing techniques with poly(lactic acid) (PLA). This work presents a methodology that could be expanded to almost any field of clinical and pre-clinical research, and moreover it avoids the need for dissecting animals to teach brain anatomy.

4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2017: 1372-1375, 2017 Jul.
Article in English | MEDLINE | ID: mdl-29060132

ABSTRACT

The study and analysis of tissues has always been an important part of the subject in biology. For this reason, obtaining specimens of tissue has been vital to morphological and functionality research. Historically, the main tools used to obtain slices of tissue have been microtomes and vibratomes. However, they are largely unsatisfactory. This is because it is impossible to obtain a full, three-dimensional structure of a tissue sample with these devices. This paper presents an automatic positioning device for a three-dimensional cut in living or fixed tissue samples, which can be applied mainly in histology, anatomy, biochemistry and pharmacology. The system consists of a platform on which the tissue samples can be deposited, plus two containers. An electromechanical system with motors and gears gives the platform the ability to change the orientation of a sample. These orientation changes were tested with movement sensors to ensure that accurate changes were made. This device paves the way for researchers to make cuts in the sample tissue along different planes and in different directions by maximizing the surface of the tract that appears in a slice.


Subject(s)
Tissue Culture Techniques , Microtomy
SELECTION OF CITATIONS
SEARCH DETAIL
...