Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(15)2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37571745

ABSTRACT

Two types of cost-efficient antennas based on dielectric gradient index dielectric lens have been designed for 5G applications at 28 GHz. The first is a linearly polarized flat lens antenna (LP-FLA) for terrestrial 5G communications. The second is a novel circularly polarized stepped lens antenna (CP-SLA) for 5G satellite services. An efficient design method is presented to optimize and conform the lens topology to the radiation pattern coming from the antenna feeder. The LP-FLA is fed by a traditional linearly polarized pyramidal horn antenna (PHA). The CP-SLA is fed by an open-ended bow-tie waveguide cavity (BCA) antenna. This cavity feeder (BCA), using cross-sections with bow-tie shapes, allows having circular polarization at the desired frequency bandwidth. The two types of presented antennas have been manufactured in order to verify their performance by an easy, low-cost, three-dimensional (3D) printing technique based on stereolithography. The peak realized gain value for the flat (LP-FLA) and stepped (CP-SLA) lens antennas have been increased at 28 GHz to 25.2 and 24.8 dBi, respectively, by disposing the lens structures at the appropriated distance from the feeders. Likewise, using an array of horns (PHA) or open-ended bow-tie waveguide cavity (BCA) antenna feeders, it is possible to obtain a maximum steering angle range of 20° and 35°, for a directivity over 15 dBi and 10 dBi, in the planar and stepped lens antennas, respectively.

2.
Micromachines (Basel) ; 12(12)2021 Dec 16.
Article in English | MEDLINE | ID: mdl-34945415

ABSTRACT

Some recent waveguide-based antennas are presented in this paper, designed for the next generation of communication systems operating at the millimeter-wave band. The presented prototypes have been conceived to be manufactured using different state-of-the-art techniques, involving subtractive and additive approaches. All the designs have used the latest developments in the field of manufacturing to guarantee the required accuracy for operation at millimeter-wave frequencies, where tolerances are extremely tight. Different designs will be presented, including a monopulse antenna combining a comparator network, a mode converter, and a spline profile horn; a tunable phase shifter that is integrated into an array to implement reconfigurability of the main lobe direction; and a conformal array antenna. These prototypes were manufactured by diverse approaches taking into account the waveguide configuration, combining parts with high-precision milling, electrical discharge machining, direct metal laser sintering, or stereolithography with spray metallization, showing very competitive performances at the millimeter-wave band till 40 GHz.

SELECTION OF CITATIONS
SEARCH DETAIL
...