Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(45): 24809-24819, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37921592

ABSTRACT

We computationally study the Zika NS3 helicase, a biological motor, using ATP hydrolysis energy for nucleic acid remodeling. Through molecular mechanics and hybrid quantum mechanics/molecular mechanics simulations, we explore the conformational landscape of motif V, a conserved loop connecting the active sites for ATP hydrolysis and nucleic acid binding. ATP hydrolysis, initiated by a meta-phosphate group formation, involves the nucleophilic attack of a water molecule activated by Glu286 proton abstraction. Motif V hydrogen bonds to this water via the Gly415 backbone NH group, assisting hydrolysis. Posthydrolysis, free energy is released when the inorganic phosphate moves away from the coordination shell of the magnesium ion, inducing a significant shift in the conformational landscape of motif V to establish a hydrogen bond between the Gly415 NH group and Glu285. According to our simulations, the Zika NS3 helicase acts as a ratchet biological motor with motif V transitions steered by Gly415's γ-phosphate sensing in the ATPase site.


Subject(s)
Nucleic Acids , Zika Virus Infection , Zika Virus , Humans , Hydrolysis , Adenosine Triphosphate/chemistry , DNA Helicases , Water , Phosphates
SELECTION OF CITATIONS
SEARCH DETAIL
...