Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 904: 166368, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37619721

ABSTRACT

Clean technologies are rapidly increasing in the last decade. In the transport sector, market share of global electric car sales has changed from 0.0 % in 2010 to 3.2 % (2.1million) in 2020, and predictions show that sales could reach near 30 % in 2030. This drastic change is mainly encouraged by environmental goals set to reduce greenhouse gas emissions (GHG) expressed in CO2-eq, not emitted by electric vehicles (EVs) during the use phase. However, clean technologies might cause other impacts during manufacture and, while clearly reduce the dependency on oil, can increase the dependency on other materials. In this context, the objectives of our work are quantifying the critical raw materials needed by permanents magnets and batteries of EVs (neodymium, lithium, and cobalt); their supply risk, performing a material flow analysis; and studying their environmental impacts using the methodology "Environmentally-Extended Multi-Regional Input-Output Analysis". This methodology is used to quantify the produced impacts and the country where the impacts are being produced, in contrast to conventional methodologies that only calculate global impacts. Therefore, environmental impacts are estimated considering different scenarios, based on environmental objectives of the European Union and China. In most scenarios China shows a key role in mining and processing of metals, being the country where major impacts are produced. Obtained results are useful to assess which environmental proposals are more effective to reduce the environmental impact of EVs and set the ground to understand the geostrategic importance of key metals used for EVs manufacture.

2.
Environ Monit Assess ; 195(3): 386, 2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36764975

ABSTRACT

Potential pollution of mining environmental liabilities' locations can be preliminarily and efficiently assessed by the potential generation of acid mine drainage and indices of contamination. This research evaluates the potential pollution by potentially toxic elements at locations with uranium mining liability evidence, using the net acid generation test and determining the background values to estimate acid mine drainage and indices of contamination. Sixty soil samples were collected, and the mineralogy and potentially toxic elements' total contents were determined by x-ray diffraction and optical spectrometry. The findings suggest that the soils related to a specific lithology might not present potential acid mine drainage generation but potential soil and sediment contamination. Future research is recommended on applying leaching tests to identify which potentially toxic elements are effectively being solubilized. Finally, it can be concluded that the study area's potential contamination is relatively low overall.


Subject(s)
Metals, Heavy , Soil Pollutants , Uranium , Uranium/analysis , Mexico , Environmental Monitoring/methods , Soil Pollutants/analysis , Soil/chemistry , Mining , Acids/analysis , Metals, Heavy/analysis
3.
Environ Monit Assess ; 194(10): 792, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36107258

ABSTRACT

Indices of contamination (IC) are usually employed to assess the hazardousness associated with potentially toxic elements (PTE) from mining wastes (MW). For such, it is necessary to know the total concentrations of the PTE and local, regional, or global background or reference levels which are tolerable or acceptable threshold values for total content in soils. Although scientific literature is vast regarding the application of IC to MW, there is scarce research on the reference levels that must be employed in locations with no established comparison values. This study proposes basic reference levels for the global application of PTE contents in MW, leading to a global index of contamination (ICG). To this end, it was determined that the PTE to be assessed in MW should be As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Pb, Sb, Se, V, and Zn. From the analysis of background and baseline values for soils, reference values for the PTE compiled from worldwide standards or studies on soil and sediment evaluation, and PTE content in MW, a classification is proposed for ICG that considers MW as very low, low, moderate, high, and very high contamination potential. The findings presented herein can be helpful in the comparison of multiple types of MW, representing the contamination hazard by particle emission due to erosion processes that reach the soils or sediments of the surrounding environment. This evaluation can aid in the decision-making process regarding the reutilization of some types of MW that receive a low classification.


Subject(s)
Mercury , Metals, Heavy , Soil Pollutants , Cadmium/analysis , Environmental Monitoring , Lead/analysis , Mercury/analysis , Metals, Heavy/analysis , Soil , Soil Pollutants/analysis
4.
Ecotoxicol Environ Saf ; 224: 112629, 2021 Aug 14.
Article in English | MEDLINE | ID: mdl-34399125

ABSTRACT

Mining operations are important causes of environmental pollution in developing countries where mining waste management is not adequate. Consequently, heavy metal(loid)s are easily released into the environment, being a potential risk to human health. This study carries out a Bayesian probabilistic human health risk assessment, related to multi-pathway exposure to heavy metal(loid)s in a gold mining area in Southern Ecuador. Concentrations of As, Cd, Cr, Cu, Ni, Pb, and Zn in tap water, surface water, and soil samples, were analyzed to assess the potential adverse human health effects based on the Hazard Index (HI) and Total cancer risk (TCR). Adults and children residents were surveyed to adjust their exposure parameters to the site-specific conditions. Exposure to heavy metal(loid)s resulted in unacceptable risk levels for human health in the two age groups, both carcinogenic (TCR > 1 × 10-5) and non-carcinogenic (HI > 1) through ingestion of tap water and incidental ingestion of surface water. Sensitivity analysis showed that As concentration in waters and exposure frequency were the main contributors to risk outcome. Exposure to soil via accidental ingestion and dermal contact was below the safety limit, not posing a risk to human health. These findings can provide a baseline for the environmental management of the mining area and indicate the need for further research on As pollution in water and its implications on the health of the inhabitants of mining communities.

5.
Environ Geochem Health ; 43(11): 4459-4474, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33881675

ABSTRACT

Gold mining is a significant source of metal(loid)s released into the environment. It is an issue of concern due to the potential adverse health effects associated with exposure to toxic elements. This study aimed to assess the ecological and human health risk caused by heavy metal(loid)s exposure in river sediments in Ponce Enríquez, one of the most important mining sites in Ecuador. Concentrations of As, Cd, Cu, Pb, and Zn were evaluated in 172 sediment samples to determine the Potential ecological risk (RI) and the carcinogenic (CR) and non-carcinogenic risk (HQ). The human exposure to polluted sediments during recreational activities was computed using Bayesian probabilistic models. Residents were randomly surveyed to adjust the risk models to the specific population data. More than 68% of the sampling stations pose a severe As and Cd ecological risk index ([Formula: see text] > 320). Likewise, residents exposed to river sediments showed a non-acceptable carcinogenic risk by incidental ingestion, being As the primary contributor to overall cancer in both children and adults receptors. Moreover, non-carcinogenic risk through the incidental ingestion of sediments was above the safe limit for children. This is the first study conducted in a mining region in Ecuador that reveals the severe levels of ecological and human health risk to which the population is exposed. These results can be applied as a baseline to develop public health strategies to monitor and reduce the health hazards of the residents of mining communities.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Adult , Bayes Theorem , Child , China , Ecuador , Environmental Monitoring , Geologic Sediments , Humans , Metals, Heavy/analysis , Metals, Heavy/toxicity , Risk Assessment , Rivers , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
6.
Waste Biomass Valorization ; 12(5): 2303-2310, 2021.
Article in English | MEDLINE | ID: mdl-32837664

ABSTRACT

ABSTRACT: In Europe, recent regulations on advanced biofuels have prompted a search for new fuel sources and the development of synthesis methods meeting the demanding specifications of the sector. However, in developing countries such as Algeria, where a significant stock of frying oil is unused, the use of diesel engines powered with waste-oil-derived biofuels must be explored. In this work, the variables related to the transesterification reaction from this frying oil with ethanol are analyzed using response surface methodology. From this analysis, only the reaction time and temperature have been determined as relevant parameters. In addition, FT-IR analysis has proven a useful tool to analyse the conversion in the transesterification reaction of waste frying oil with ethanol and is cheaper and quicker than GC-FID. This sustainable biofuel (FAEE), mixed with a diesel and pure fuel, has been physically characterized. The mixture of FAEE at 30% by volume with diesel meets the requirements demanded in standard EN 590 and can be classified as winter diesel class D. As a pure biofuel, only its high cold flow temperatures could constitute a drawback for exporting to temperate climates but not for internal consumption.

7.
J Environ Manage ; 273: 111139, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32768761

ABSTRACT

Potentially toxic elements (PTEs) present in abandoned mining wastes (AMW) are of great concern because of potential risks to human health and ecosystems. Indices of contamination (IC) applied to mining wastes are calculated using the total concentration of PTEs and comparing them with regional geochemical backgrounds. However, determining the total content of heavy metals is insufficient to assess the hazard of mining wastes. Therefore, in addition to total concentration, the potential risk is also evaluated through water mobility of elements. Accordingly, leaching procedures are useful tools for the geochemical characterization of soluble constituents that are mobilized. In this study, the solubility of PTEs from different types of mining wastes is comparatively assessed using three standard leaching methods (European; U.S. Geological Survey and; Mexican). The Hazard Average Quotient (HAQ) was calculated to assess the potential Toxicity Factor (TF). TF is an indicator of the relative potential toxicity of wastes and is the basis for the classification of AMW. A comparative assessment provides evidence that there are no statistically significant differences in PTEs solubility by the three leaching methods and it was also found that the pH of the eluates was dictated by the type of waste. Results suggest that the IC gives an indicator of the potential contamination of soils and sediments by erosive processes, or a long-term measure, whereas TF assesses the possibility of contaminating water in the short term. The most significant finding is the new ranking scale of TF, as a function of HAQ, applied to the Mexican standard leaching test. This factor, together with other considerations relating to risk-generating processes, might then be applied in places having large amounts of recorded AMW, such as the Iberian Peninsula and Latin America, where effective management is required to rank sites, based on preliminary environmental and human risk assessment.


Subject(s)
Metals, Heavy/analysis , Soil Pollutants/analysis , Ecosystem , Environmental Monitoring , Humans , Mexico , Mining
8.
Ecotoxicol Environ Saf ; 201: 110833, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32535368

ABSTRACT

The largest mercury (Hg) mining district in the world is located in Almadén (Spain), with well-known environmental impacts in the surrounding ecosystem. However, the impact of mercury on the health of the inhabitants of this area has not been documented accordingly. This study aims to carry out a probabilistic human health risk assessment using Bayesian modeling to estimate the non-carcinogenic risk related to Hg through multiple exposure pathways. Samples of vegetables, wild mushrooms, fish, soil, water, and air were analyzed, and adult residents were randomly surveyed to adjust the risk models to the specific population data. On the one hand, the results for the non-carcinogenic risk based on Hazard Quotient (HQ) showed unacceptable risk levels through ingestion of Hg-contaminated vegetables and fish, with HQ values 20 and 3 times higher, respectively, than the safe exposure threshold of 1 for the 97.5th percentile. On the other hand, ingestion of mushrooms, dermal contact with soil, ingestion of water, dermal contact with water and inhalation of air, were below the safety limit for the 97.5th percentile, and did not represent a risk to the health of residents. In addition, the probabilistic approach was compared with the conservative deterministic approach, and similar results were obtained. This is the first study conducted in Almadén, which clearly reveals the high levels of human health risk to which the population is exposed due to the legacy of two millennia of Hg mining.


Subject(s)
Environmental Exposure/analysis , Environmental Pollutants/analysis , Mercury/analysis , Mining , Adult , Agaricales/chemistry , Air/analysis , Animals , Bayes Theorem , Ecosystem , Fishes/metabolism , Humans , Random Allocation , Risk Assessment , Soil/chemistry , Spain , Vegetables/chemistry
9.
Sci Total Environ ; 686: 580-589, 2019 Oct 10.
Article in English | MEDLINE | ID: mdl-31185405

ABSTRACT

The purpose of this research is to find a mathematical model based on a statistical analysis to predict the evolution of the total petroleum hydrocarbons (TPH) concentrations with time in the bioremediation process of diesel contaminated soils. The analysis is useful to compare and ascertain the efficiency of different remediation treatments and the influence of both soil characteristics and initial concentration levels of hydrocarbons on the biodegradation process. An experimental design, considering two types of soil, two concentration levels of hydrocarbons and six different amendments was carried out. A total of 336 laboratory tests were conducted during a year in 48 land plots of 4×4m, spreading over eight field campaigns. The results show, for the first time to the best of our knowledge, that the bioremediation process can be adjusted quantitatively to an exponential model, following a first-order kinetic equation. The model explains correctly the higher efficiency of some treatments. In the case of hydrocarbon concentrations <16,000mg/kg, it is advisable to use slow-release fertilizer without the use of surfactant; whereas, for concentrations above 30,000mg/kg, the addition of surfactants improves the results considerably.


Subject(s)
Biodegradation, Environmental , Petroleum/analysis , Soil Pollutants/analysis , Linear Models , Petroleum/metabolism , Soil Pollutants/metabolism
10.
Sci Total Environ ; 586: 446-456, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28215803

ABSTRACT

Polycyclic Aromatic Hydrocarbons (PAHs) are pollutants of concern due to their carcinogenic and mutagenic activity. Their emissions are mainly related with the combustion or pyrolysis of the organic matter, such as in fossil fuels combustion. It is important to characterize PAHs in the combustions of biofuels due to their increasing importance in the actual energetic setting. There is a lot of research focused in PAHs emission due to the combustion in diesel engines; but only few of them have analyzed the effect of raw material and type of alcohol used in the transesterification process. Different raw materials (i.e. animal fat, palm, rapeseed, linseed, peanut, coconut, and soybean oils) have been used for obtaining FAME and FAEE. A method for measuring PAHs generated during combustion in a bomb calorimeter has been developed. Combustion was made at different oxygen pressures and the samples were taken from the bomb after each combustion. Samples were extracted and the PAHs amounts formed during combustion were analyzed by GC-MS. This research shows the statistical relationships among the 16 PAHs of concern, biodiesel composition and oxygen pressure during combustion.

11.
Biodegradation ; 18(3): 269-81, 2007 Jun.
Article in English | MEDLINE | ID: mdl-16821101

ABSTRACT

We present a rationale for the selection of a microbial consortia specifically adapted to degrade toxic components of oil refinery tank bottom sludge (OTBS). Sources such as polluted soils, petrochemical waste, sludge from refinery-wastewater plants, and others were used to obtain a collection of eight microorganisms, which were individually tested and characterized to analyze their degradative capabilities on different hydrocarbon families. After initial experiments using mixtures of these strains, we developed a consortium consisting of four microorganisms (three bacteria and one yeast) selected in the basis of their cometabolic effects, emulsification properties, colonization of oil components, and degradative capabilities. Although the specific contribution each of the former parameters makes is not clearly understood, the activity of the four-member consortium had a strong impact not only on linear alkane degradation (100%), but also on the degradation of cycloalkanes (85%), branched alkanes (44%), and aromatic and sulphur-aromatic compounds (31-55%). The effectiveness of this consortium was significantly superior to that obtained by individual strains, commercial inocula or an undefined mixture of culturable and non-culturable microorganisms obtained from OTBS-polluted soil. However, results were similar when another consortium of four microorganisms, previously isolated in the same OTBS-polluted soil, was assayed.


Subject(s)
Bacteria/metabolism , Fungi/metabolism , Oils/chemistry , Oils/metabolism , Sewage/chemistry , Bacteria/growth & development , Bacteria/isolation & purification , Biodegradation, Environmental , Biotransformation , Fungi/growth & development , Fungi/isolation & purification , Gas Chromatography-Mass Spectrometry , Hydrocarbons/analysis , Hydrocarbons/metabolism , Sewage/analysis , Soil Microbiology , Soil Pollutants
SELECTION OF CITATIONS
SEARCH DETAIL
...