Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mikrochim Acta ; 190(8): 296, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37458876

ABSTRACT

A new magnetic functionalized material based on graphene oxide magnetic nanoparticles named by us, M@GO-TS, was designed and characterized in order to develop a magnetic solid-phase extraction method (MSPE) to enrich inorganic and organic species of lead, mercury, and vanadium. A flow injection (FI) system was used to preconcentrate the metallic and organometallic species simultaneously, while the ultra-trace separation and determination of the selected species were achieved by high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry (HPLC-ICP MS). Therefore, preconcentration and separation/determination processes were automated and conducted separately. To the best of our knowledge, this is the first method combining an online MSPE and HPLC-ICP MS for multielemental speciation. Under the optimized conditions, the enrichment factor obtained for PbII, trimethyllead (TML), HgII, methylmercury (MetHg), and VV was 27. The calculated LOD for all studied species were as follows: 5 ng L-1, 20 ng L-1, 2 ng L-1, 10 ng L-1, and 0.4 ng L-1, respectively. The RSD values calculated with a solution containing 0.5 µg L-1 of all species were between 2.5 and 4.5%. The developed method was validated by analyzing Certified Reference Materials TMDA 64.3 for total concentration and also by recovery analysis of the species in human urine from volunteers and a seawater sample collected in Málaga. The t statistical test showed no significant differences between the certified and found values for TMDA 64.3. All the recoveries obtained from spiked human urine and seawater samples were close to 100%. All samples were analyzed using external calibration. The developed method is sensitive and promising for routine monitoring of the selected species in environmental waters and biological samples.

2.
Anal Chim Acta ; 1205: 339738, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35414390

ABSTRACT

This paper presents a novel approach, based on the standard addition method, for overcoming the matrix effects that often hamper the accurate characterization of nanoparticles (NPs) in complex samples via single particle inductively coupled plasma mass spectrometry (SP-ICP-MS). In this approach, calibration of the particle size is performed by two different methods: (i) by spiking a suspension of NPs standards of known size containing the analyte, or (ii) by spiking the sample with ionic standards; either way, the measured sensitivity is used in combination with the transport efficiency (TE) for sizing the NPs. Moreover, such transport efficiency can be readily obtained from the data obtained via both calibration methods mentioned above, so that the particle number concentration can also be determined. The addition of both ionic and NP standards can be performed on-line, by using a T-piece with two inlet lines of different dimensions. The smaller of the two is used for the standards, thus ensuring a constant and minimal sample dilution. As a result of the spiking of the samples, mixed histograms including the signal of the sample and that of the standards are obtained. However, the use of signal deconvolution approaches permits to extract the information, even in cases of signal populations overlapping. For proofing the concept, characterization of a 50 nm AuNPs suspension prepared in three different media (i.e., deionized water, 5% ethanol, and 2.5% tetramethyl ammonium hydroxide-TMAH) was carried out. Accurate results were obtained in all cases, in spite of the matrix effects detected in some media. Overall, the approach proposed offers flexibility, so it can be adapted to different situations, but it might be specially indicated for samples for which the matrix is not fully known and/or dilution is not possible/recommended.


Subject(s)
Gold , Metal Nanoparticles , Gold/chemistry , Mass Spectrometry/methods , Metal Nanoparticles/chemistry , Particle Size , Spectrum Analysis
3.
Nanomaterials (Basel) ; 10(2)2020 Feb 11.
Article in English | MEDLINE | ID: mdl-32053910

ABSTRACT

In this work, the synthesis of new adsorbent nanomaterials based on the coupling of magnetic nanoparticles and graphene oxide (MNPs-GO) was addressed. Separately, MNPs and GO have adsorbent properties of great interest, but their use involves certain difficulties. The coupling seeks compensation for their disadvantages, while maintaining their excellent properties. Three different routes to synthesize coupled MNPs-GO were studied and are compared in this work. The three synthesized materials were functionalized with chelating groups: [1,5-bis (di-2-pyridyl) methylene] thiocarbonohydrazide (DPTH) and [1,5-bis(2-pyridyl)3-sulfophenylmethylene] thiocarbonohydrazide (PSTH). The new adsorbent nanomaterials were characterized adequately. Moreover, their capacities of adsorption toward heavy and noble metals were determined, in order to apply them as extractants in magnetic solid-phase extraction to preconcentrate metals in environmental samples. The results showed that one of the routes provided nanomaterials with better adsorbent characteristics and higher yields of functionalization.

SELECTION OF CITATIONS
SEARCH DETAIL
...