Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Front Big Data ; 6: 1200390, 2023.
Article in English | MEDLINE | ID: mdl-37719684

ABSTRACT

Perimeter security in data centers helps protect systems and the data they store by preventing unauthorized access and protecting critical resources from potential threats. According to the report of the information security company SonicWall, in 2021, there was a 66% increase in the number of ransomware attacks. In addition, the message from the same company indicates that the total number of cyber threats detected in 2021 increased by 24% compared to 2019. Among these attacks, the infrastructure of data centers was compromised; for this reason, organizations include elements Physical such as security cameras, movement detection systems, authentication systems, etc., as an additional measure that contributes to perimeter security. This work proposes using artificial intelligence in the perimeter security of data centers. It allows the automation and optimization of security processes, which translates into greater efficiency and reliability in the operations that prevent intrusions through authentication, permit verification, and monitoring critical areas. It is crucial to ensure that AI-based perimeter security systems are designed to protect and respect user privacy. In addition, it is essential to regularly monitor the effectiveness and integrity of these systems to ensure that they function correctly and meet security standards.

2.
PeerJ Comput Sci ; 7: e781, 2021.
Article in English | MEDLINE | ID: mdl-34977349

ABSTRACT

University education is at a critical moment due to the pandemic generated by the Coronavirus Disease 2019. Universities, to guarantee the continuity of education, have considered it necessary to modify their educational models, implementing a transition towards a remote education model. This model depends on the use of information and communication technologies for its execution and the establishment of synchronous classes as a means of meeting between teachers and students. However, moving from face-to-face classes to online classes is not enough to meet all the needs of students. By not meeting the needs and expectations of students, problems are generated that directly affect learning. In this work, Big data and artificial intelligence are integrated as a solution in a technological architecture that supports the remote education model. This integration makes it possible to identify the state of learning and recommend immediate actions to its actors. Teachers, knowing the variables that affect academic performance, have the ability to change the components of learning or the method used. Improving learning and validating the capacity of information technologies to generate digital environments suitable for the generation of knowledge. In addition to improving the functionality of educational models and their adaptability to the new normal.

SELECTION OF CITATIONS
SEARCH DETAIL