Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Arch Med Res ; : 103026, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38897915

ABSTRACT

BACKGROUND: Ulipristal acetate (UPA) and levonorgestrel are used as emergency hormonal contraceptives. Although both are highly effective in preventing pregnancy, UPA shows efficacy even when taken up to 120 h after unprotected sexual intercourse. AIMS: To investigate whether the mechanism of UPA's contraceptive action involves post-fertilization effects. METHODS: In vitro and in vivo studies using cultured human endometrial cells and a pre-clinical rat model. RESULTS: Endometrial cells treated with UPA showed changes in the expression of receptivity gene markers and a significant decrease in trophoblast spheroids attached to the cultured cells. In addition, administration of UPA to female unmated rats decreased the expression of implantation-related genes in the endometrium and inhibited the number of implantation sites in the mated group compared to the non-treated group. CONCLUSIONS: These results support that UPA as an emergency contraceptive might have post-fertilization effects that may affect embryo implantation.

2.
Int J Mol Sci ; 25(6)2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38542136

ABSTRACT

HER2-positive breast cancer is associated with aggressive behavior and reduced survival rates. Calcitriol restores the antiproliferative activity of antiestrogens in estrogen receptor (ER)-negative breast cancer cells by re-expressing ERα. Furthermore, calcitriol and its analog, EB1089, enhance responses to standard anti-cancer drugs. Therefore, we aimed to investigate EB1089 effects when added to the combined treatment of lapatinib and antiestrogens on the proliferation of HER2-positive breast cancer cells. BT-474 (ER-positive/HER2-positive) and SK-BR-3 (ER-negative/HER2-positive) cells were pre-treated with EB1089 to modulate ER expression. Then, cells were treated with EB1089 in the presence of lapatinib with or without the antiestrogens, and proliferation, phosphorylation array assays, and Western blot analysis were performed. The results showed that EB1089 restored the antiproliferative response to antiestrogens in SK-BR-3 cells and improved the inhibitory effects of the combination of lapatinib with antiestrogens in the two cell lines. Moreover, EB1089, alone or combined, modulated ERα protein expression and reduced Akt phosphorylation in HER2-positive cells. EB1089 significantly enhanced the cell growth inhibitory effect of lapatinib combined with antiestrogens in HER2-positive breast cancer cells by modulating ERα expression and Akt phosphorylation suppression. These results highlight the potential of this therapeutic approach as a promising strategy for managing HER2-positive breast cancer.


Subject(s)
Breast Neoplasms , Calcitriol/analogs & derivatives , Humans , Female , Lapatinib/pharmacology , Lapatinib/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Calcitriol/pharmacology , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estrogen Receptor Modulators/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Receptor, ErbB-2/metabolism , Estrogen Antagonists/therapeutic use , Cell Line, Tumor
3.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 08.
Article in English | MEDLINE | ID: mdl-38004441

ABSTRACT

Breast cancer is the most prevalent neoplasia among women worldwide. For the estrogen receptor-positive (ER+) phenotype, tamoxifen is the standard hormonal therapy; however, it carries the risk of promoting endometrial carcinoma. Hence, we aimed to evaluate the antiproliferative effect of the phytochemical α-mangostin (AM) as a co-adjuvant alongside tamoxifen on breast cancer cells to improve its efficacy while reducing its adverse effects on endometrium. For this, ER+ breast cancer cells (MCF-7 and T-47D) and endometrial cells (N30) were treated with AM, 4-hydroxytamoxifen (4-OH-TMX), and their combination. Cell proliferation was evaluated using sulforhodamine B assay, and the pharmacological interaction was determined through the combination index and the dose reduction index calculation. The genes KCNH1, CCDN1, MKI67, and BIRC5 were amplified by real-time PCR as indicators of oncogenesis, cell cycle progression, cell proliferation, and apoptosis, respectively. Additionally, genes involved in ER signaling were analyzed. In breast cancer cells, the combination of AM with 4-OH-TMX showed a synergistic antiproliferative effect and favorable dose reduction. AM and 4-OH-TMX decreased KCNH1, CCND1, and BIRC5 gene expression. In endometrial cells, AM decreased MKI-67 gene expression, while it reverted the 4-OH-TMX-dependent CCND1 upregulation. This study establishes the benefits of incorporating AM as a co-adjuvant for first-line ER+ breast cancer therapy.

4.
Int J Mol Sci ; 24(18)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37762073

ABSTRACT

Vasculogenic mimicry (VM), a process in which aggressive cancer cells form tube-like structures, plays a crucial role in providing nutrients and escape routes. Highly plastic tumor cells, such as those with the triple-negative breast cancer (TNBC) phenotype, can develop VM. However, little is known about the interplay between the cellular components of the tumor microenvironment and TNBC cells' VM capacity. In this study, we analyzed the ability of endothelial and stromal cells to induce VM when interacting with TNBC cells and analyzed the involvement of the FGFR/PI3K/Akt pathway in this process. VM was corroborated using fluorescently labeled TNBC cells. Only endothelial cells triggered VM formation, suggesting a predominant role of paracrine/juxtacrine factors from an endothelial origin in VM development. Via immunocytochemistry, qPCR, and secretome analyses, we determined an increased expression of proangiogenic factors as well as stemness markers in VM-forming cancer cells. Similarly, endothelial cells primed by TNBC cells showed an upregulation of proangiogenic molecules, including FGF, VEGFA, and several inflammatory cytokines. Endothelium-dependent TNBC-VM formation was prevented by AZD4547 or LY294002, strongly suggesting the involvement of the FGFR/PI3K/Akt axis in this process. Given that VM is associated with poor clinical prognosis, targeting FGFR/PI3K/Akt pharmacologically may hold promise for treating and preventing VM in TNBC tumors.

5.
Int J Mol Sci ; 24(10)2023 May 12.
Article in English | MEDLINE | ID: mdl-37240017

ABSTRACT

Vitamin D along with its active metabolite calcitriol and its metabolic and signaling system, known as the vitamin D endocrine system, have been widely recognized as a pivotal regulator of calcium homeostasis in addition to non-calcemic antitumoral effects in a variety of human cancers, including cervical cancer. Several studies have found an inverse relationship between the incidence of cervical neoplasia and vitamin D levels. This narrative review updates the current evidence supporting the notion that the vitamin D endocrine system has a preventive role on cervical cancer, mainly in the early phases of the disease, acting at the level of suppressing cell proliferation, promoting apoptosis, modulating inflammatory responses, and probably favoring the clearance of human papillomavirus-dependent cervical lesions. Although an optimal vitamin D status helps in the prevention and regression of low-grade squamous intraepithelial lesions of the cervix, it appears that vitamin D alone or combined with chemotherapeutic agents has little effectivity once advanced cervical cancer is established. These observations suggest that an optimal vitamin D status might exert beneficial actions in the early phases of cervical cancer by preventing its onset and progression.


Subject(s)
Papillomavirus Infections , Uterine Cervical Dysplasia , Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/prevention & control , Uterine Cervical Neoplasms/epidemiology , Vitamin D/therapeutic use , Uterine Cervical Dysplasia/pathology , Papillomavirus Infections/pathology , Cervix Uteri/pathology , Vitamins , Papillomaviridae
6.
Int J Mol Sci ; 24(3)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36769377

ABSTRACT

Cervical cancer is the fourth most common cancer among women worldwide. The main factor associated with the onset and progression of this neoplasia is the human papillomavirus (HPV) infection. The HPV-oncogenes E6 and E7 are critical drivers of cellular transformation, promoting the expression of oncogenes such as KCNH1. The phytochemical α-mangostin (AM) is a potent antineoplastic and antiviral compound. However, its effects on HPV oncogenes and KCNH1 gene expression remain unknown. This study evaluated the effects of AM on cell proliferation, cell cycle distribution and gene expression, including its effects on tumor growth in xenografted mice. AM inhibited cell proliferation in a concentration-dependent manner, being the most sensitive cell lines those with the highest number of HPV16 copies. In addition, AM promoted G1-cell cycle arrest in CaSki cells, while led to cell death in SiHa and HeLa cells. Of interest was the finding of an AM-dependent decreased gene expression of E6, E7 and KCNH1 both in vitro and in vivo, as well as the modulation of cytokine expression, Ki-67, and tumor growth inhibition. On these bases, we suggest that AM represents a good option as an adjuvant for the treatment and prevention of cervical cancer.


Subject(s)
Oncogene Proteins, Viral , Papillomavirus Infections , Uterine Cervical Neoplasms , Humans , Female , Animals , Mice , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Oncogene Proteins, Viral/genetics , Oncogene Proteins, Viral/metabolism , HeLa Cells , Papillomavirus E7 Proteins/genetics , Papillomavirus E7 Proteins/metabolism , Repressor Proteins/genetics , Oncogenes , Cell Proliferation , Gene Expression , Ether-A-Go-Go Potassium Channels/genetics
7.
Cells ; 11(16)2022 08 15.
Article in English | MEDLINE | ID: mdl-36010605

ABSTRACT

Chronic infection by high-risk human papillomaviruses (HPV) and chronic inflammation are factors associated with the onset and progression of several neoplasias, including cervical cancer. Oncogenic proteins E5, E6, and E7 from HPV are the main drivers of cervical carcinogenesis. In the present article, we review the general mechanisms of HPV-driven cervical carcinogenesis, as well as the involvement of cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) and downstream effectors in this pathology. We also review the evidence on the crosstalk between chronic HPV infection and PGE2 signaling, leading to immune response weakening and cervical cancer development. Finally, the last section updates the current therapeutic and preventive options targeting PGE2-derived inflammation and HPV infection in cervical cancer. These treatments include nonsteroidal anti-inflammatory drugs, prophylactic and therapeutical vaccines, immunomodulators, antivirals, and nanotechnology. Inflammatory signaling pathways are closely related to the carcinogenic nature of the virus, highlighting inflammation as a co-factor for HPV-dependent carcinogenesis. Therefore, blocking inflammatory signaling pathways, modulating immune response against HPV, and targeting the virus represent excellent options for anti-tumoral therapies in cervical cancer.


Subject(s)
Oncogene Proteins, Viral , Papillomavirus Infections , Uterine Cervical Neoplasms , Carcinogenesis , Female , Humans , Inflammation/complications , Oncogene Proteins, Viral/metabolism , Papillomavirus Infections/complications , Papillomavirus Infections/drug therapy , Prostaglandins , Prostaglandins E , Uterine Cervical Neoplasms/drug therapy , Uterine Cervical Neoplasms/pathology
8.
Int J Mol Sci ; 23(14)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35887002

ABSTRACT

In highly aggressive tumors, cancer cells may form channel-like structures through a process known as vasculogenic mimicry (VM). VM is generally associated with metastasis, mesenchymal phenotype, and treatment resistance. VM can be driven by antiangiogenic treatments and/or tumor microenvironment-derived factors, including those from the endothelium. Curcumin, a turmeric product, inhibits VM in some tumors, while calcitriol, the most active vitamin D metabolite, exerts potent antineoplastic effects. However, the effect of these natural products on VM in breast cancer remains unknown. Herein, we studied the effect of both compounds on triple-negative breast cancer (TNBC) VM-capacity in a co-culture model. The process of endothelial cell-induced VM in two human TNBC cell lines was robustly inhibited by calcitriol and partially by curcumin. Calcitriol promoted TNBC cells' morphological change from spindle-like to cobblestone-shape, while curcumin diminished VM 3D-structure. Notably, the treatments dephosphorylated several active kinases, especially those involved in the PI3K/Akt pathway. In summary, calcitriol and curcumin disrupted endothelium-induced VM in TNBC cells partially by PI3K/Akt inactivation and mesenchymal phenotype inhibition. Our results support the possible use of these natural compounds as adjuvants for VM inactivation in patients with malignant tumors inherently capable of forming VM, or those with antiangiogenic therapy, warranting further in vivo studies.


Subject(s)
Calcitriol , Curcumin , Endothelium, Vascular , Triple Negative Breast Neoplasms , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Calcitriol/pharmacology , Calcitriol/therapeutic use , Cell Line, Tumor , Curcumin/pharmacology , Curcumin/therapeutic use , Endothelium/drug effects , Endothelium/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Humans , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Tumor Microenvironment/drug effects , Tumor Microenvironment/physiology
9.
J Steroid Biochem Mol Biol ; 223: 106132, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35659529

ABSTRACT

Fibroblast growth factor receptor (FGFR) overamplification/activation in cancer leads to increased cell proliferation. AZD4547, a FGFR selective inhibitor, hinders breast cancer cells growth. Although luminal B breast tumors may respond to chemotherapy and endocrine therapy, this subtype is associated with poor prognosis, inadequate response and/or acquired drug resistance. Calcitriol, the vitamin D most active metabolite, exerts anti-neoplastic effects and enhances chemotherapeutic drugs activity. In this study, we sought to decrease the concentration of AZD4547 needed to inhibit the luminal-B breast cancer cell line BT-474 proliferation by its combination with calcitriol. Anti-proliferative inhibitory concentrations, combination index and dose-reduction index were analyzed from Sulforhodamine B assays. Western blot and qPCR were used to study FGFR molecular targets. The compound's ability to inhibit BT-474 cells tumorigenic capacity was assessed by tumorspheres formation. Results: BT-474 cells were dose-dependently growth-inhibited by calcitriol and AZD4547 (IC50 = 2.9 nM and 3.08 µM, respectively). Calcitriol at 1 nM synergistically improved AZD4547 antiproliferative effects, allowing a 2-fold AZD4547 dose-reduction. Mechanistically, AZD4547 downregulated p-FGFR1, p-Akt and tumorsphere formation. Calcitriol also decreased tumorspheres, while induced cell differentiation. Both compounds inhibited MYC and CCND1 expression, as well as ALDH, a stemness marker that positively correlated with FGFR1 and negatively with VDR expression in breast cancer transcriptomic data. In conclusion, the drugs impaired self-aggregation capacity, reduced stemness features, induced cell-differentiation and when combined, synergistically inhibited cell proliferation. Overall, our results suggest that calcitriol, at low pharmacological doses, may be a suitable candidate to synergize AZD4547 effects in luminal B breast tumors, allowing to reduce dose and adverse effects.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Benzamides , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Calcitriol/pharmacology , Cell Line, Tumor , Cell Proliferation , Female , Humans , Piperazines , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Pyrazoles
10.
Molecules ; 27(1)2022 Jan 01.
Article in English | MEDLINE | ID: mdl-35011496

ABSTRACT

Fibroblast activation protein (FAP) is expressed in the microenvironment of most human epithelial tumors. 68Ga-labeled FAP inhibitors based on the cyanopyrrolidine structure (FAPI) are currently used for the detection of the tumor microenvironment by PET imaging. This research aimed to design, synthesize and preclinically evaluate a new FAP inhibitor radiopharmaceutical based on the 99mTc-((R)-1-((6-hydrazinylnicotinoyl)-D-alanyl) pyrrolidin-2-yl) boronic acid (99mTc-iFAP) structure for SPECT imaging. Molecular docking for affinity calculations was performed using the AutoDock software. The chemical synthesis was based on a series of coupling reactions of 6-hidrazinylnicotinic acid (HYNIC) and D-alanine to a boronic acid derivative. The iFAP was prepared as a lyophilized formulation based on EDDA/SnCl2 for labeling with 99mTc. The radiochemical purity (R.P.) was verified via ITLC-SG and reversed-phase radio-HPLC. The stability in human serum was evaluated by size-exclusion HPLC. In vitro cell uptake was assessed using N30 stromal endometrial cells (FAP positive) and human fibroblasts (FAP negative). Biodistribution and tumor uptake were determined in Hep-G2 tumor-bearing nude mice, from which images were acquired using a micro-SPECT/CT. The iFAP ligand (Ki = 0.536 nm, AutoDock affinity), characterized by UV-Vis, FT-IR, 1H-NMR and UPLC-mass spectroscopies, was synthesized with a chemical purity of 92%. The 99mTc-iFAP was obtained with a R.P. >98%. In vitro and in vivo studies indicated high radiotracer stability in human serum (>95% at 24 h), specific recognition for FAP, high tumor uptake (7.05 ± 1.13% ID/g at 30 min) and fast kidney elimination. The results found in this research justify additional dosimetric and clinical studies to establish the sensitivity and specificity of the 99mTc-iFAP.


Subject(s)
Endopeptidases/metabolism , Liver Neoplasms, Experimental , Membrane Proteins/metabolism , Neoplasm Proteins/metabolism , Organotechnetium Compounds , Radiopharmaceuticals , Single Photon Emission Computed Tomography Computed Tomography , Technetium , Animals , Hep G2 Cells , Humans , Liver Neoplasms, Experimental/diagnostic imaging , Liver Neoplasms, Experimental/metabolism , Male , Mice , Mice, Inbred BALB C , Organotechnetium Compounds/chemistry , Organotechnetium Compounds/pharmacokinetics , Organotechnetium Compounds/pharmacology , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/pharmacology , Technetium/chemistry , Technetium/pharmacokinetics , Technetium/pharmacology
11.
Rev Physiol Biochem Pharmacol ; 183: 45-101, 2022.
Article in English | MEDLINE | ID: mdl-32715321

ABSTRACT

The expression and function of many ion channels and transporters in cancer cells display major differences in comparison to those from healthy cells. These differences provide the cancer cells with advantages for tumor development. Accordingly, targeting ion channels and transporters have beneficial anticancer effects including inhibition of cancer cell proliferation, migration, invasion, metastasis, tumor vascularization, and chemotherapy resistance, as well as promoting apoptosis. Some of the molecular mechanisms associating ion channels and transporters with cancer include the participation of oxidative stress, immune response, metabolic pathways, drug synergism, as well as noncanonical functions of ion channels. This diversity of mechanisms offers an exciting possibility to suggest novel and more effective therapeutic approaches to fight cancer. Here, we review and discuss most of the current knowledge suggesting novel therapeutic approaches for cancer therapy targeting ion channels and transporters. The role and regulation of ion channels and transporters in cancer provide a plethora of exceptional opportunities in drug design, as well as novel and promising therapeutic approaches that may be used for the benefit of cancer patients.


Subject(s)
Neoplasms , Apoptosis , Cell Proliferation , Humans , Ion Channels , Neoplasms/pathology , Neovascularization, Pathologic
12.
Int J Mol Sci ; 22(23)2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34884550

ABSTRACT

Preclinical, clinical, and epidemiological studies indicate that vitamin D3 (VD) deficiency is a risk factor for the development of breast cancer. Underlying mechanisms include the ability of calcitriol to induce cell differentiation, inhibit oncogenes expression, and modify different signaling pathways involved in the control of cell proliferation. In addition, calcitriol combined with different kinds of antineoplastic drugs has been demonstrated to enhance their beneficial effects in an additive or synergistic fashion. However, a recognized adjuvant regimen based on calcitriol for treating patients with breast cancer has not yet been fully established. Accordingly, in the present work, we review and discuss the preclinical and clinical studies about the combination of calcitriol with different oncological drugs, aiming to emphasize its main therapeutic benefits and opportunities for the treatment of this pathology.


Subject(s)
Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Calcitriol/therapeutic use , Drug Synergism , Apoptosis , Bone Density Conservation Agents/therapeutic use , Breast Neoplasms/pathology , Drug Therapy, Combination , Female , Humans
13.
Nutrients ; 13(9)2021 Sep 04.
Article in English | MEDLINE | ID: mdl-34578991

ABSTRACT

Urinary tract infections (UTI) during pregnancy are frequently associated with hypertensive disorders, increasing the risk of perinatal morbidity. Calcitriol, vitamin D3's most active metabolite, has been involved in blood pressure regulation and prevention of UTIs, partially through modulating vasoactive peptides and antimicrobial peptides, like cathelicidin. However, nothing is known regarding the interplay between placental calcitriol, cathelicidin, and maternal blood pressure in UTI-complicated pregnancies. Here, we analyzed the correlation between these parameters in pregnant women with UTI and with normal pregnancy (NP). Umbilical venous serum calcitriol and its precursor calcidiol were significantly elevated in UTI. Regardless of newborn's sex, we found strong negative correlations between calcitriol and maternal systolic and diastolic blood pressure in the UTI cohort (p < 0.002). In NP, this relationship was observed only in female-carrying mothers. UTI-female placentas showed higher expression of cathelicidin and CYP27B1, the calcitriol activating-enzyme, compared to male and NP samples. Accordingly, cord-serum calcitriol from UTI-female neonates negatively correlated with maternal bacteriuria. Cathelicidin gene expression positively correlated with gestational age in UTI and with newborn anthropometric parameters. Our results suggest that vitamin D deficiency might predispose to maternal cardiovascular risk and perinatal infections especially in male-carrying pregnancies, probably due to lower placental CYP27B1 and cathelicidin expression.


Subject(s)
Blood Pressure/immunology , Calcitriol/blood , Fetal Blood/metabolism , Pregnancy Complications, Infectious/blood , Urinary Tract Infections/blood , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/blood , Adult , Antimicrobial Cationic Peptides/blood , Female , Gestational Age , Humans , Infant, Newborn , Male , Placenta/metabolism , Pregnancy , Pregnancy Complications, Infectious/immunology , Pregnancy Complications, Infectious/microbiology , Sex Factors , Urinary Tract Infections/immunology , Urinary Tract Infections/microbiology , Vitamin D Deficiency/blood , Vitamin D Deficiency/immunology , Vitamin D Deficiency/microbiology , Cathelicidins
14.
Cells ; 10(7)2021 07 12.
Article in English | MEDLINE | ID: mdl-34359928

ABSTRACT

In solid tumors, vasculogenic mimicry (VM) is the formation of vascular structures by cancer cells, allowing to generate a channel-network able to transport blood and tumor cells. While angiogenesis is undertaken by endothelial cells, VM is assumed by cancer cells. Besides the participation of VM in tumor neovascularization, the clinical relevance of this process resides in its ability to favor metastasis and to drive resistance to antiangiogenic therapy. VM occurs in many tumor types, including breast cancer, where it has been associated with a more malignant phenotype, such as triple-negative and HER2-positive tumors. The latter may be explained by known drivers of VM, like hypoxia, TGFB, TWIST1, EPHA2, VEGF, matrix metalloproteinases, and other tumor microenvironment-derived factors, which altogether induce the transformation of tumor cells to a mesenchymal phenotype with a high expression rate of stemness markers. This review analyzes the current literature in the field, including the participation of some microRNAs and long noncoding RNAs in VM-regulation and tumorigenesis of breast cancer. Considering the clinical relevance of VM and its association with the tumor phenotype and clinicopathological parameters, further studies are granted to target VM in the clinic.


Subject(s)
Breast Neoplasms/blood supply , Breast Neoplasms/pathology , Molecular Mimicry , Neovascularization, Pathologic/pathology , Animals , Breast Neoplasms/genetics , Female , Humans , Molecular Mimicry/genetics , Phenotype , RNA, Untranslated/genetics , RNA, Untranslated/metabolism , Tumor Microenvironment/genetics
15.
J Steroid Biochem Mol Biol ; 214: 105979, 2021 11.
Article in English | MEDLINE | ID: mdl-34438041

ABSTRACT

Chemotherapy is a standard therapeutic option for triple-negative breast cancer (TNBC); however, its effectiveness is often compromised by drug-related toxicity and resistance development. Herein, we aimed to evaluate whether an improved antineoplastic effect could be achieved in vitro and in vivo in TNBC by combining dovitinib, a multi-kinase inhibitor, with calcitriol, a natural anticancer hormone. In vitro, cell proliferation and cell-cycle distribution were studied by sulforhodamine B-assays and flow cytometry. In vivo, dovitinib/calcitriol effects on tumor growth, angiogenesis, and endothelium activation were evaluated in xenografted mice by caliper measures, Itgb3/VEGFR2-immunohistochemistry and 99mTc-Ethylenediamine-N,N-diacetic acid/hydrazinonicotinamyl-Glu[cyclo(Arg-Gly-Asp-D-Phe-Lys)]2 (99mTc-RGD2)-tumor uptake. The drug combination elicited a synergistically improved antiproliferative effect in TNBC-derived cells, which allowed a 7-fold and a 3.3-fold dovitinib dose-reduction in MBCDF-Tum and HCC-1806 cells, respectively. Mechanistically, the co-treatment induced a cell cycle profile suggestive of cell death and DNA damage (accumulation of cells in SubG1, S, and G2/M phases), increased the number of multinucleated cells and inhibited tumor growth to a greater extent than each compound alone. Tumor uptake of 99mTc-RGD2 was reduced by dovitinib, suggesting angiogenesis inhibition, which was corroborated by decreased endothelial cell growth, tumor-vessel density and VEGFR2 expression. In summary, calcitriol synergized dovitinib anticancer effects in vitro and in vivo, allowing for a significant dose-reduction of dovitinib while maintaining its antiproliferative potency. Our results suggest the beneficial convergence of independent antitumor mechanisms of dovitinib and calcitriol to inhibit TNBC-tumor growth.


Subject(s)
Antineoplastic Agents/pharmacology , Benzimidazoles/pharmacology , Calcitriol/pharmacology , Oligopeptides/chemistry , Quinolones/pharmacology , Technetium/chemistry , Triple Negative Breast Neoplasms/drug therapy , Animals , Benzimidazoles/administration & dosage , Calcitriol/administration & dosage , Cell Cycle , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Damage , Dose-Response Relationship, Drug , Female , Humans , Inhibitory Concentration 50 , Integrin beta3/metabolism , Mice , Mice, Nude , Neoplasm Transplantation , Neovascularization, Pathologic , Quinolones/administration & dosage , Single Photon Emission Computed Tomography Computed Tomography , Vascular Endothelial Growth Factor Receptor-2/metabolism
16.
Am J Reprod Immunol ; 86(3): e13434, 2021 09.
Article in English | MEDLINE | ID: mdl-33905581

ABSTRACT

PROBLEM: The cAMP pathway is involved in important biological processes including immune regulation and hormone signaling. At the feto-maternal unit, cAMP participates in placental function/physiology and the establishment of immunoendocrine networks. Low cAMP in male fetuses cord blood has been linked to poorer perinatal outcomes; however, cAMP placental content and its relationship with immune factors and fetal sex in an infectious condition have not been investigated. METHOD OF STUDY: Sex-dependent changes in cAMP content and its association with cytokines and antimicrobial peptides expression were studied in human placentas collected from normal pregnancies and with urinary tract infections (UTI). Radioimmunoassay was used to quantify cAMP in placental tissue, while immune markers expression was studied by qPCR. Additionally, cAMP effect on antimicrobial peptides expression was studied in cultured trophoblasts challenged with lipopolysaccharide, to mimic an infection. RESULTS: In UTI, placentas from female neonates had higher cAMP tissue content and increased expression of TNFA, IL1B, and IL10 than those from males, where IFNG was more elevated. While cAMP negatively correlated with maternal bacteriuria and IFNG, it positively correlated with the antimicrobial peptide S100A9 expression in a sex-specific fashion. In cultured trophoblasts, cAMP significantly stimulated ß-defensin-1 while reduced the lipopolysaccharide-dependent stimulatory effect on ß-defensin-2, ß-defensins-3, and S100A9. CONCLUSION: Our results showed higher cAMP content and defense cytokines expression in placentas associated with female neonates from pregnancies complicated by UTI. The associations between cAMP and bacteriuria/immune markers, together with cAMP's ability to differentially regulate placental antimicrobial peptides expression, suggest a dual modulatory role for cAMP in placental immunity.


Subject(s)
Cyclic AMP/immunology , Cytokines/immunology , Placenta/immunology , Pregnancy Complications, Infectious/immunology , Urinary Tract Infections/immunology , Cross-Sectional Studies , Cyclic AMP/metabolism , Female , Humans , Infant, Newborn , Male , Placenta/metabolism , Pregnancy , Pregnancy Complications, Infectious/metabolism , Sex Characteristics , Urinary Tract Infections/metabolism
17.
Cancers (Basel) ; 11(11)2019 Nov 06.
Article in English | MEDLINE | ID: mdl-31698751

ABSTRACT

Calcitriol is a multitarget anticancer hormone; however, its effects on angiogenesis remain contradictory. Herein, we tested whether the antiangiogenic phytochemicals curcumin or resveratrol improved calcitriol antitumorigenic effects in vivo. Triple-negative breast cancer tumoral cells (MBCDF-T) were xenografted in nude mice, maintaining treatments for 3 weeks. Tumor onset, volume and microvessel density were significantly reduced in mice coadministered with calcitriol and curcumin (Cal+Cur). Vessel count was also reduced in mice simultaneously treated with calcitriol and resveratrol (Cal+Rsv). Cal+Cur and Cal+Rsv treatments resulted in less tumor activated endothelium, as demonstrated by decreased tumor uptake of integrin-targeted biosensors in vivo. The renal gene expression of Cyp24a1 and Cyp27b1 suggested increased calcitriol bioactivity in the combined regimens. In vitro, the phytochemicals inhibited both MBCDF-T and endothelial cells proliferation, while potentiated calcitriol's ability to reduce MBCDF-T cell-growth and endothelial cells migration. Resveratrol induced endothelial cell death, as deduced by increased sub-G1 cells accumulation, explaining the reduced tumor vessel number in resveratrol-treated mice, which further diminished when combined with calcitriol. In conclusion, the concomitant administration of calcitriol with curcumin or resveratrol synergistically promoted anticancer effects in vitro and in vivo in human mammary tumor cells. Whereas the results suggest different mechanisms of action of the phytochemicals when coadministered with calcitriol, the converging biological effect was inhibition of tumor neoangiogenesis.

18.
Rev Invest Clin ; 71(3): 186-194, 2019.
Article in English | MEDLINE | ID: mdl-31184333

ABSTRACT

BACKGROUND: Expression and activity of the potassium channel ether-à-go-go-1 (EAG1) are strongly related to carcinogenesis and tumor progression, which can be exploited for therapeutic purposes. EAG1 activity may be reduced by preventing its phosphorylation with epidermal growth factor receptor (EGFR) kinase inhibitors and by astemizole, which blocks the channel pore and downregulates its gene expression. OBJECTIVE: We aimed to study the potential cooperative antiproliferative effect of the EGFR inhibitor gefitinib and the EAG1-blocker astemizole, in breast cancer cells. MATERIALS AND METHODS: The cells were characterized by immunocytochemistry. Inhibitory concentrations were determined by non-linear regression analysis using dose-response curves. The nature of the pharmacological effect was evaluated by the combination index equation while cell cycle analysis was studied by flow cy-tometry. RESULTS: Astemizole and gefitinib inhibited cell proliferation in a concentration-dependent manner, with inhibitory concentrations (IC 50) values of 1.72 µM and 0.51 µM, respectively. All combinations resulted in a synergistic antiproliferative effect. The combination of astemizole and gefitinib diminished the percentage of cells in G2/M and S phases, while increased accumulation in G0/G1 of the cell cycle. CONCLUSIONS: Astemizole and gefitinib synergistically inhibited proliferation in breast cancer cells expressing both EGFR and EAG1. Our results suggest that the combined treatment increased cell death by targeting the oncogenic activity of EAG1.


Subject(s)
Antineoplastic Agents/pharmacology , Astemizole/pharmacology , Breast Neoplasms/drug therapy , Gefitinib/pharmacology , Antineoplastic Agents/administration & dosage , Astemizole/administration & dosage , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Synergism , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Ether-A-Go-Go Potassium Channels/genetics , Female , Gefitinib/administration & dosage , Gene Expression Regulation, Neoplastic , Humans , Inhibitory Concentration 50 , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology
19.
Rev. invest. clín ; 71(3): 186-194, May.-Jun. 2019. tab, graf
Article in English | LILACS | ID: biblio-1289686

ABSTRACT

Abstract Background Expression and activity of the potassium channel ether-à-go-go-1 (EAG1) are strongly related to carcinogenesis and tumor progression, which can be exploited for therapeutic purposes. EAG1 activity may be reduced by preventing its phosphorylation with epidermal growth factor receptor (EGFR) kinase inhibitors and by astemizole, which blocks the channel pore and downregulates its gene expression. Objective We aimed to study the potential cooperative antiproliferative effect of the EGFR inhibitor gefitinib and the EAG1-blocker astemizole, in breast cancer cells. Materials and Methods The cells were characterized by immunocytochemistry. Inhibitory concentrations were determined by non-linear regression analysis using dose-response curves. The nature of the pharmacological effect was evaluated by the combination index equation while cell cycle analysis was studied by flow cytometry. Results Astemizole and gefitinib inhibited cell proliferation in a concentration-dependent manner, with inhibitory concentrations (IC 50) values of 1.72 µM and 0.51 µM, respectively. All combinations resulted in a synergistic antiproliferative effect. The combination of astemizole and gefitinib diminished the percentage of cells in G2/M and S phases, while increased accumulation in G0/G1 of the cell cycle. Conclusions Astemizole and gefitinib synergistically inhibited proliferation in breast cancer cells expressing both EGFR and EAG1. Our results suggest that the combined treatment increased cell death by targeting the oncogenic activity of EAG1.


Subject(s)
Humans , Female , Breast Neoplasms/drug therapy , Astemizole/pharmacology , Gefitinib/pharmacology , Antineoplastic Agents/pharmacology , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Astemizole/administration & dosage , Inhibitory Concentration 50 , Cell Line, Tumor , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Synergism , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Ether-A-Go-Go Potassium Channels/genetics , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Gefitinib/administration & dosage , Antineoplastic Agents/administration & dosage
20.
J Steroid Biochem Mol Biol ; 186: 154-160, 2019 02.
Article in English | MEDLINE | ID: mdl-30359690

ABSTRACT

Clinical and epidemiological evidence supports that pregnancies carrying a male fetus are more vulnerable to infections and preterm birth, probably due to testosterone immunosuppressive properties. In human placentas, testosterone lowers the expression of CYP27B1, the vitamin D (VD)-activating enzyme, diminishing cathelicidin synthesis, a potent VD-dependent antimicrobial peptide (AMP). VD also stimulates other AMPs, including defensins. To get insights into the increased male vulnerability mechanisms, we investigated the relationship between fetal sex and the immunoendocrine milieu at the fetoplacental unit. For this, umbilical vein serum and placental samples were collected from healthy newborns. In males' serum, testosterone levels were significantly higher and negatively associated with TNF-α, a cytokine that strengthens the immune response. Males showed lower serum TNF-α and increased levels and gene expression of the immunosuppressive cytokine IL-10. Only in female samples there was a positive association (P < 0.05) between AMPs and both TNF-α and CYP27B1 and between 25-hydroxyvitamin D3 and IL-1ß serum levels. Accordingly, VD-metabolites (25-hydroxyvitamin D3, calcitriol) significantly stimulated IL-1ß gene expression in cultured trophoblasts. Interestingly, IL-1ß mRNA correlated positively with defensins (P < 0.05) in males, but not with cathelicidin expression, which was significantly diminished in comparison to females. Our data suggest that high umbilical serum testosterone and IL-10 in males could explain reduced TNF-α levels and lack of association between VD-dependent innate immunity markers and proinflammatory cytokines expression in the fetoplacental unit. Altogether, our observations imply a restricted basal immune milieu in males compared to females, which may help understand the higher male susceptibility to adverse perinatal outcomes.


Subject(s)
Testosterone/blood , Tumor Necrosis Factor-alpha/blood , Adult , Female , Humans , Immunity, Innate , Infant, Newborn , Interleukin-10/blood , Interleukin-10/immunology , Male , Placenta/chemistry , Placenta/immunology , Pregnancy , Testosterone/immunology , Tumor Necrosis Factor-alpha/immunology , Umbilical Cord/blood supply , Umbilical Cord/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...