Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Chem Sci ; 15(24): 9274-9280, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38903214

ABSTRACT

Broadening carborane applications has consistently been the goal of chemists in this field. Herein, compared to alkyl or aryl groups, a carborane cage demonstrates an advantage in stabilizing a unique bonding interaction: M⋯C-H interaction. Experimental results and theoretical calculations have revealed the characteristic of this two-center, two-electron bonding interaction, in which the carbon atom in the arene ring provides two electrons to the metal center. The reduced aromaticity of the benzene moiety, long distance between the metal and carbon atom in arene, and the upfield shift of the signal of M⋯C-H in the nuclear magnetic resonance spectrum distinguished this interaction from metal⋯C π interaction and metal-C(H) σ bonds. Control experiments demonstrate the unique electronic effects of carborane in stabilizing the M⋯C-H bonding interaction in organometallic chemistry. Furthermore, the M⋯C-H interaction can convert into C-H bond metallization under acidic conditions or via treatment with t-butyl isocyanide. These findings deepen our understanding regarding the interactions between metal centers and carbon atoms and provide new opportunities for the use of carboranes.

2.
Angew Chem Int Ed Engl ; 62(31): e202305280, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37278299

ABSTRACT

The possibility for AuIII σ-cyclopropyl complexes to undergo ring-opening and give π-allyl complexes was interrogated. The transformation was first evidenced within (P,C)-cyclometalated complexes, it occurs within hours at -50 °C. It was then generalized to other ancillary ligands. With (N,C)-cyclometalated complexes, the rearrangement occurs at room temperature while it proceeds already at -80 °C with a dicationic (P,N)-chelated complex. Density Functional Theory (DFT) calculations shed light on the mechanism of the transformation, a disrotatory electrocyclic ring-opening. Intrinsic Bond Orbital (IBO) analysis along the reaction profile shows the cleavage of the distal σ(CC) bond to give a π-bonded allyl moiety. Careful inspection of the structure and bonding of cationic σ-cyclopropyl complexes support the possible existence of C-C agostic interactions at AuIII .

3.
J Am Chem Soc ; 145(19): 10800-10808, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37137163

ABSTRACT

The phosphine-borane iPr2P(o-C6H4)BFxyl2 (Fxyl = 3,5-(F3C)2C6H3) 1-Fxyl was found to promote the reductive elimination of ethane from [AuMe2(µ-Cl)]2. Nuclear magnetic resonance monitoring revealed the intermediate formation of the (1-Fxyl)AuMe2Cl complex. Density functional theory calculations identified a zwitterionic path as the lowest energy profile, with an overall activation barrier more than 10 kcal/mol lower than without borane assistance. The Lewis acid moiety first abstracts the chloride to generate a zwitterionic Au(III) complex, which then readily undergoes C(sp3)-C(sp3) coupling. The chloride is finally transferred back from boron to gold. The electronic features of this Lewis-assisted reductive elimination at gold have been deciphered by intrinsic bond orbital analyses. Sufficient Lewis acidity of boron is required for the ambiphilic ligand to trigger the C(sp3)-C(sp3) coupling, as shown by complementary studies with two other phosphine-boranes, and the addition of chlorides slows down the reductive elimination of ethane.

4.
Chemistry ; 29(37): e202301091, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37074869

ABSTRACT

The coordination of secondary phosphine oxides (SPO) was shown to efficiently promote the activation of C(sp2 )-I bonds by gold, as long as a base is added (NEt3 , K2 CO3 ). These transformations stand as a new type of chelation-assisted oxidative addition to gold. The role of the base and the influence of the electronic properties of the P-ligand were analyzed computationally. Accordingly, the oxidative addition was found to be dominated by Au→(Ar-I) backdonation. In this case, gold behaves similarly to palladium, suggesting that the inverse electron flow reported previously (with prevailing (Ar-I)→Au donation, resulting in faster reactions of electron-enriched substrates) is a specific feature of electron-deficient cationic gold(I) complexes. The reaction gives straightforward access to (P=O,C)-cyclometallated Au(III) complexes. The possibility to chemically derivatize the SPO moiety at Au(III) was substantiated by protonation and silylation reactions.

5.
Phys Chem Chem Phys ; 24(48): 29333-29337, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36472153

ABSTRACT

The agostic bond plays an important role in chemistry, not only in transition metal chemistry but also in main group chemistry. In some complexes with M⋯H-X (X = C, N) interactions, differentiation among agostic, anagostic, and hydrogen bonds is challenging. Here we propose the use of three-centre electron sharing indices to classify M⋯H-X (X = C, N) interactions.

6.
Chem Sci ; 13(35): 10499-10505, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36277619

ABSTRACT

Chelating P^P and hemilabile P^N ligands were found to trigger the oxidation of Au(i) complexes by o-benzoquinones. The ensuing Au(iii) catecholate complexes have been characterized by NMR spectroscopy, single crystal X-ray diffraction and X-ray absorption spectroscopy. They adopt tetracoordinate square-planar structures. Reactivity studies substantiate the reversibility of the transformation. In particular, the addition of competing ligands such as chloride and alkenes gives back Au(i) complexes with concomitant release of the o-quinone. DFT calculations provide insight about the structure and relative stability of the Au(i) o-quinone and Au(iii) catecholate forms, and shed light on the 2-electron transfer from gold to the o-quinone.

7.
J Am Chem Soc ; 143(30): 11568-11581, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34310877

ABSTRACT

π-Allyl complexes play a prominent role in organometallic chemistry and have attracted considerable attention, in particular the π-allyl Pd(II) complexes which are key intermediates in the Tsuji-Trost allylic substitution reaction. Despite the huge interest in π-complexes of gold, π-allyl Au(III) complexes were only authenticated very recently. Herein, we report the reactivity of (P,C)-cyclometalated Au(III) π-allyl complexes toward ß-diketo enolates. Behind an apparently trivial outcome, i.e. the formation of the corresponding allylation products, meticulous NMR studies combined with DFT calculations revealed a complex and rich mechanistic picture. Nucleophilic attack can occur at the central and terminal positions of the π-allyl as well as the metal itself. All paths are observed and are actually competitive, whereas addition to the terminal positions largely prevails for Pd(II). Auracyclobutanes and π-alkene Au(I) complexes were authenticated spectroscopically and crystallographically, and Au(III) σ-allyl complexes were unambiguously characterized by multinuclear NMR spectroscopy. Nucleophilic additions to the central position of the π-allyl and to gold are reversible. Over time, the auracyclobutanes and the Au(III) σ-allyl complexes evolve into the π-alkene Au(I) complexes and release the C-allylation products. The relevance of auracyclobutanes in gold-mediated cyclopropanation was demonstrated by inducing C-C coupling with iodine. The molecular orbitals of the π-allyl Au(III) complexes were analyzed in-depth, and the reaction profiles for the addition of ß-diketo enolates were thoroughly studied by DFT. Special attention was devoted to the regioselectivity of the nucleophilic attack, but C-C coupling to give the allylation products was also considered to give a complete picture of the reaction progress.

8.
Chem Commun (Camb) ; 57(3): 347-350, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33319216

ABSTRACT

The phosphine-borane iPr2P(o-C6H4)BFXyl2 (Fxyl = 3,5-(F3C)2C6H3) was found to react with gold(i) alkynyl and vinyl complexes via an original 1,1-phosphaboration process. Zwitterionic complexes resulting from Au to B transmetallation have been authenticated as key intermediates. X-ray diffraction analyses show that the alkynyl-borate moiety remains pendant while the vinyl-borate is side-on coordinated to gold. According to DFT calculations, the phosphaboration then proceeds in a trans stepwise manner via decoordination of the phosphine, followed by anti nucleophilic attack to the π-CC bond activated by gold. The boron center acts as a relay and tether for the organic group.

9.
J Am Chem Soc ; 142(33): 14039-14044, 2020 08 19.
Article in English | MEDLINE | ID: mdl-32709201

ABSTRACT

A new mode of bond activation involving M→Z interactions is disclosed. Coordination to transition metals as σ-acceptor ligands was found to enable the activation of fluorosilanes, opening the way to the first transition-metal-catalyzed Si-F bond activation. Using phosphines as directing groups, sila-Negishi couplings were developed by combining Pd and Ni complexes with external Lewis acids such as MgBr2. Several key catalytic intermediates have been authenticated spectroscopically and crystallographically. Combined with DFT calculations, all data support cooperative activation of the fluorosilane via Pd/Ni→Si-F→Lewis acid interaction with conversion of the Z-type fluorosilane ligand into an X-type silyl moiety.

10.
Chemistry ; 25(41): 9771-9779, 2019 Jul 22.
Article in English | MEDLINE | ID: mdl-31149750

ABSTRACT

The influence of the replacement of C=C bonds by isoelectronic B-N moieties on the reactivity of π-curved polycyclic aromatic hydrocarbons has been computationally explored by means of density functional theory calculations. To this end, we selected the Diels-Alder cycloaddition reactions of the parent corannulene and its BN-doped counterparts with either cyclopentadiene or maleic anhydride. In addition, the analogous reactions involving larger buckybowls, such as BN-hemifullerene, BN-circumtrindene, and BN-fullerene, have been also considered. It has been found that whereas corannulene behaves as a dienophile, its BN counterpart better acts as a diene. In contrast, the larger BN-curved systems cannot be used as dienes in Diels-Alder reactions, but undergo facile (i.e., low barrier) cycloaddition reactions with cyclopentadiene. The observed trends in reactivity, which cannot be directly explained by using typical frontier molecular orbital arguments, are quantitatively described in detail by means of state-of-the-art computational methods, namely the activation strain model of reactivity combined with the energy decomposition analysis method. The results of our calculations highlight the crucial role of the curvature of the system on the reactivity and its influence on the strength of the orbital interactions between the deformed reactants during their transformations.

11.
J Org Chem ; 84(7): 4330-4337, 2019 Apr 05.
Article in English | MEDLINE | ID: mdl-30848908

ABSTRACT

The factors controlling the reactivity of the strained-alkyne embedded cycloparaphenylenes have been computationally explored by means of Density Functional Theory calculations. To this end, the Diels-Alder cycloaddition reaction involving cyclopentadiene and these macrocyclic systems has been selected in order to understand the influence of the strained nature of the alkyne in their structures as well as the size of the system on their reactivity. It is found that the cycloaddition reactions involving those macrocycles having more strained alkynes not only are more exothermic and exhibit lower activation barriers but also are associated with earlier transition states. The combination of the Activation Strain Model of reactivity and the Energy Decomposition Analysis method suggests that the enhanced reactivity of bent alkynes, as compared to linear C≡C triple bonds, finds its origin not only in the lower deformation energy required to adopt the corresponding transition state structure but also in the stronger interaction energy between the deformed reactants.

12.
Phys Chem Chem Phys ; 20(44): 28011-28018, 2018 Nov 14.
Article in English | MEDLINE | ID: mdl-30382266

ABSTRACT

The influence of the charge on the Diels-Alder reactivity of azafullerenes (C59N+ and C59N-) has been computationally explored by means of density functional theory calculations. In addition, the regioselectivity of the process has been investigated and compared to the analogous cycloaddition reaction involving the parent neutral azahydro[60]fullerene C59NH. It is found that the [4+2]-cycloaddition reaction between C59N+ and cyclopentadiene, which occurs concertedly through a synchronous transition state, proceeds with a lower activation barrier and is more exothermic than the analogous process involving C59NH. In contrast, the anionic C59N- counterpart is clearly less reactive. This reactivity trend is quantitatively analyzed in detail by means of the activation strain model of reactivity in combination with the energy decomposition analysis method. It is found that the frontier molecular orbital interactions are not responsible for the observed reactivity trend but the Pauli repulsion between closed-shells mainly governs the transformation.

13.
J Org Chem ; 83(6): 3285-3292, 2018 03 16.
Article in English | MEDLINE | ID: mdl-29470060

ABSTRACT

The physical factors governing the regioselectivity of the double functionalization of fullerenes have been explored by means of density functional theory calculations. To this end, the second Diels-Alder cycloaddition reactions involving 1,3-butadiene and the parent C60 fullerene as well as the ion-encapsulated system Li+@C60 have been selected. In agreement with previous experimental findings on related processes, it is found that the cycloaddition reaction, involving either C60 or Li+@C60, occurs selectively at specific [6,6]-bonds. The combination of the activation strain model of reactivity and the energy decomposition analysis methods has been applied to gain a quantitative understanding into the markedly different reactivity of the available [6,6]-bonds leading to the observed regioselectivity in the transformation.

14.
J Org Chem ; 82(15): 8157-8164, 2017 08 04.
Article in English | MEDLINE | ID: mdl-28696716

ABSTRACT

The physical factors governing the Diels-Alder reactivity of (2,7)pyrenophanes have been computationally explored using state-of-the-art Density Functional Theory calculations. It is found that the [4 + 2]-cycloaddition reactions between these cyclophanes and tetracyanoethylene, which occur concertedly through highly asynchronous transition states, proceed with lower activation barriers and are more exothermic than the analogous process involving the parent planar pyrene. The influence of the bent equilibrium geometry of the pyrenophane as a function of the length of the bridge as well as the nature of the tether on the transformation are analyzed in detail. By means of the Activation Strain Model of reactivity and the Energy Decomposition Analysis methods, a detailed quantitative understanding of the reactivity of this particular family of cyclophanes is presented.

15.
Chemistry ; 23(46): 11030-11036, 2017 Aug 16.
Article in English | MEDLINE | ID: mdl-28485506

ABSTRACT

The influence of the encapsulation of an ion inside the C60 fullerene cage on its exohedral reactivity was explored by means of DFT calculations. To this end, the Diels-Alder reaction between 1,3-cyclohexadiene and M@C60 (M=Li+ , Na+ , K+ , Be2+ , Mg2+ , Al3+ , and Cl- ) was studied and compared to the analogous process involving the parent C60 fullerene. A significant enhancement of the Diels-Alder reactivity is found for systems having an endohedral cation, whereas a clear decrease in reactivity is observed when an anion is encapsulated in the C60 cage. The origins of this reactivity trend were quantitatively analyzed in detail by using the activation strain model of reactivity in combination with energy decomposition analysis.

16.
Chemistry ; 23(27): 6634-6642, 2017 May 11.
Article in English | MEDLINE | ID: mdl-28338243

ABSTRACT

The influence of the nature of the transition-metal fragment on the Diels-Alder reactivity of metallaanthracenes has been explored computationally within the Density Functional Theory framework. It is found that the cycloaddition reactions with maleic anhydride become kinetically less favored for those processes involving metallaanthracenes compared with the analogous reaction involving the parent anthracene. The origins of this reduction in the Diels-Alder reactivity have been quantitatively analyzed in detail by using the activation strain model of reactivity in combination with the energy decomposition analysis method. In general, the transition-metal fragment makes the interaction energy between the reactants significantly lower, particularly at the transition state region, which is translated into a higher activation barrier. In addition, the influence of the aromaticity strength of the metallabenzene present in the considered metallaanthracenes on the barriers of the cycloaddition reactions has also been assessed.

17.
J Org Chem ; 82(1): 754-758, 2017 01 06.
Article in English | MEDLINE | ID: mdl-27977179

ABSTRACT

The Diels-Alder reactivity of C59NH azafullerene has been explored computationally. The regioselectivity of the process and the factors controlling the reduced reactivity of this system with respect to the parent C60 fullerene have been analyzed in detail by using the activation strain model of reactivity and the energy decomposition analysis method. It is found that the presence of the nitrogen atom and the CH fragment in the fullerene reduces the interaction between the deformed reactants along the entire reaction coordinate.

18.
Chemistry ; 22(38): 13669-76, 2016 Sep 12.
Article in English | MEDLINE | ID: mdl-27439790

ABSTRACT

The oxidative addition reaction of X-H σ-bonds to Group 13 (E=Al, Ga, In) containing compounds has been computationally explored within the density functional theory framework. These reactions, which proceed concertedly involving the E(I) →E(III) oxidation, are exothermic and associated with relatively low activation barriers. In addition, the following trends in reactivity are found: (i) the activation barriers are lower for the X-H bonds involving the heavier element in the same group (ΔE(≠) : C>Si; N>P; O>S), (ii) the process becomes kinetically more favorable in going from left to right in the same period (ΔE(≠) : C>N>O; Si≈P>S), and (iii) the activation barrier systematically increases when heavier Group 13 elements are involved in the transformation (ΔE(≠) : Al

19.
J Org Chem ; 81(15): 6554-62, 2016 08 05.
Article in English | MEDLINE | ID: mdl-27383907

ABSTRACT

The factors controlling the reactivity and endo/exo selectivity of the Diels-Alder reactions involving 1,2-azaborines have been computationally explored within the density functional theory framework. It is found that the AlCl3-catalyzed [4 + 2]-cycloaddition reaction between these dienes and N-methylmaleimide proceeds concertedly and leads almost exclusively to the corresponding endo cycloadduct, which is in good agreement with previous experimental observations. In addition, the effect of the substituent directly attached to the boron atom of the 1,2-azaborine on the process is also analyzed in detail. To this end, the combination of the activation strain model of reactivity and the energy decomposition analysis methods has been applied to gain a quantitative understanding into the origins of the endo selectivity of the process as well as the influence of the boron and nitrogen substituent on the barrier heights of the transformations.

20.
Chemistry ; 22(30): 10572-80, 2016 Jul 18.
Article in English | MEDLINE | ID: mdl-27304921

ABSTRACT

The Diels-Alder reactivity of maleic anhydride towards the bay regions of planar polycyclic aromatic hydrocarbons was explored computationally in the DFT framework. The process becomes more and more exothermic and the associated activation barriers become lower and lower when the size of the system increases. This enhanced reactivity follows an exponential behavior that reaches its maximum for systems having 18-20 benzenoid rings in their structures. This peculiar behavior was analyzed in detail by using the activation strain model of reactivity in combination with energy decomposition analysis. The influence of the change in the aromaticity of the polycyclic compound during the process on the respective activation barriers was also studied.

SELECTION OF CITATIONS
SEARCH DETAIL
...