Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
RSC Med Chem ; 14(1): 154-165, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36760742

ABSTRACT

An Ugi-Zhu three-component reaction (UZ-3CR) coupled in one pot manner to a cascade process (N-acylation/aza Diels-Alder cycloaddition/decarboxylation/dehydration) was performed to synthesize a series of bis-furyl-pyrrolo[3,4-b]pyridin-5-ones in 45 to 82% overall yields using ytterbium triflate as a catalyst, toluene as a solvent, and microwaves as a heat source. The synthesized molecules were evaluated in vitro against human SARS-CoV-2 through a time-of-addition approach, finding that compound 1e, at a concentration of 10.0 µM, exhibited a significant reduction at the initial infection stages, thus showing prophylactic potential. On the other hand, it was found that compound 1d, at the same concentration, was significantly active when applied post-infection, thus exhibiting a therapeutic profile. Moreover, compound 1f showed both, prophylactic and therapeutic activity. Then, to understand interactions between synthesized compounds and the main proteins related to the virus, docking studies were performed on spike-glycoprotein, main-protease, and Nsp3 protein, finding moderate to strong binding energies, matching accurately with the in vitro results. Additionally, a pharmacophore model was computed behind further rational drug design.

2.
Molecules ; 21(7)2016 Jul 22.
Article in English | MEDLINE | ID: mdl-27455223

ABSTRACT

Chlorophyll is a pyrrolic pigment with important optical properties, which is the reason it has been studied for many years. Recently, interest has been rising with respect to this molecule because of its outstanding physicochemical properties, particularly applicable to the design and development of luminescent materials, hybrid sensor systems, and photodynamic therapy devices for the treatment of cancer cells and bacteria. More recently, our research group has been finding evidence for the possibility of preserving these important properties of substrates containing chlorophyll covalently incorporated within solid pore matrices, such as SiO2, TiO2 or ZrO2 synthesized through the sol-gel process. In this work, we study the optical properties of silica xerogels organo-modified on their surface with allyl and phenyl groups and containing different concentrations of chlorophyll bonded to the pore walls, in order to optimize the fluorescence that these macrocyclic species displays in solution. The intention of this investigation was to determine the maximum chlorophyll a concentration at which this molecule can be trapped inside the pores of a given xerogel and to ascertain if this pigment remains trapped as a monomer, a dimer, or aggregate. Allyl and phenyl groups were deposited on the surface of xerogels in view of their important effects on the stability of the molecule, as well as over the fluorescence emission of chlorophyll; however, these organic groups allow the trapping of either chlorophyll a monomers or dimers. The determination of the above parameters allows finding the most adequate systems for subsequent in vitro or in vivo studies. The characterization of the obtained xerogels was performed through spectroscopic absorption, emission and excitation spectra. These hybrid systems can be employed as mimics of natural systems; the entrapment of chlorophyll inside pore matrices indicates that it is possible to exploit some of the most physicochemical properties of trapped chlorophyll for diverse technological applications. The data herein collected suggest the possibility of applying the developed methodology to other active, captive molecules in order to synthesize new hybrid materials with optimized properties, suitable to be applied in diverse technological fields.


Subject(s)
Chlorophyll/chemistry , Silica Gel/chemistry , Chlorophyll/administration & dosage , Chlorophyll A , Drug Carriers/chemistry , Fluorescence , Hydrolysis , Models, Molecular , Molecular Structure , Photoelectron Spectroscopy , Solvents , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet
3.
J Fluoresc ; 26(5): 1601-16, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27324951

ABSTRACT

Most of the studies performed with porphyrins involve these species functionalized with peripheral substituents lying on the same macrocyclic molecular plane. The main objective of this work deals with the successful preservation and optimization of the fluorescence of a uncommonly used porphyrin species, i.e. tetrakis-(ortho-amino-phenyl)-porphyrin; a molecule with substituents localized not only at one but at both sides of its molecular plane. In cases like this, it must be stressed that fluorescence can only be partially preserved; nevertheless, intense fluorescence can still be reached by following a twofold functionalization strategy involving: (i) the bonding of substituted macrocycles to the pore walls of (ii) organo-modified silica monoliths synthesized by the sol-gel method. The analysis of both absorption and emission UV spectra evidenced a radiation energy transfer taking place between the porphyrin and the host silica matrix. Our results showed that the adequate displaying of the optical properties of macrocyclic species trapped in SiO2 xerogels depend on the polarity existing inside the pores, a property which can be tuned up through the adequate selection of organic groups used to modify the surface of the pore cavities. Additionally, the pore widths attained in the final xerogels can vary depending on the identity of the organic groups attached to the network. All these facts finally demonstrated that, even if using inefficient surface functionalization species, such as ortho-substituted tetraphenylporphyrins, it is still possible to modulate the pore shape, pore size, and physicochemical environment created around the trapped macrocycles. The most important aspect related to this research deals with the fact that the developed methodology offers a real possibility of controlling both the textural and morphological characteristics of a new kind of hybrid porous materials and to optimize the physicochemical properties of diverse active molecules trapped inside the pores of these materials.

5.
Oncogene ; 32(16): 2069-78, 2013 Apr 18.
Article in English | MEDLINE | ID: mdl-22689058

ABSTRACT

The EVI1 gene (3q26) codes for a transcription factor with important roles in normal hematopoiesis and leukemogenesis. High expression of EVI1 is a negative prognostic indicator of survival in acute myeloid leukemia (AML) irrespective of the presence of 3q26 rearrangements. However, the only known mechanisms that lead to EVI1 overexpression are 3q aberrations, and the MLL-ENL oncoprotein, which activates the transcription of EVI1 in hematopoietic stem cells. Our aim was to characterize the functional promoter region of EVI1, and to identify transcription factors involved in the regulation of this gene. Generation of seven truncated constructs and luciferase reporter assays allowed us to determine a 318-bp region as the minimal promoter region of EVI1. Site-directed mutagenesis and chromatin immunoprecipitation (ChIP) assays identified RUNX1 and ELK1 as putative transcription factors of EVI1. Furthermore, knockdown of RUNX1 and ELK1 led to EVI1 downregulation, and their overexpression to upregulation of EVI1. Interestingly, in a series of patient samples with AML at diagnosis, we found a significant positive correlation between EVI1 and RUNX1 at protein level. Moreover, we identified one of the roles of RUNX1 in the activation of EVI1 during megakaryocytic differentiation. EVI1 knockdown significantly inhibited the expression of megakaryocytic markers after treating K562 cells with TPA, as happens when knocking down RUNX1. In conclusion, we define the minimal promoter region of EVI1 and demonstrate that RUNX1 and ELK1, two proteins with essential functions in hematopoiesis, regulate EVI1 in AML. Furthermore, our results show that one of the mechanisms by which RUNX1 regulates the transcription of EVI1 is by acetylation of the histone H3 on its promoter region. This study opens new directions to further understand the mechanisms of EVI1 overexpressing leukemias.


Subject(s)
Core Binding Factor Alpha 2 Subunit/genetics , DNA-Binding Proteins/genetics , Leukemia, Myeloid, Acute/genetics , Proto-Oncogenes/genetics , Transcription Factors/genetics , ets-Domain Protein Elk-1/genetics , Acetylation , Base Sequence , Cell Differentiation/genetics , Cell Line, Tumor , Core Binding Factor Alpha 2 Subunit/biosynthesis , Core Binding Factor Alpha 2 Subunit/metabolism , DNA-Binding Proteins/metabolism , Histones/genetics , Histones/metabolism , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , MDS1 and EVI1 Complex Locus Protein , Megakaryocytes/cytology , Megakaryocytes/physiology , Molecular Sequence Data , Promoter Regions, Genetic , Transcription Factors/metabolism , Transcription, Genetic , Transfection , ets-Domain Protein Elk-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...