Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(1): e23493, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38173478

ABSTRACT

In this paper, we present the results of a research experience of implementing andragogy in a learning environment designed to better meet the needs of adult learners studying part-time at a distance university. The learning environment was composed of a learning experience on a formal distance university online course that has been enriched with a non-formal component based on students' participation in a Massive Online Open Course (MOOC) related to the same topic. The non-formal experience was designed to consolidate the learning of specific content that involved difficult concepts and foster collaborative skills. The university online course is in the field of computer science and human-computer interaction. The instructional design, including the course assignments, has been guided by Knowles' principles of andragogy. Results from the data analysis of five years of academic results and student satisfaction has helped to understand the learning experience from including a MOOC in adult distance formal learning.

2.
PLoS One ; 17(11): e0276539, 2022.
Article in English | MEDLINE | ID: mdl-36409715

ABSTRACT

This registered report introduces the largest, and for the first time, reproducible experimental survey on biomedical sentence similarity with the following aims: (1) to elucidate the state of the art of the problem; (2) to solve some reproducibility problems preventing the evaluation of most current methods; (3) to evaluate several unexplored sentence similarity methods; (4) to evaluate for the first time an unexplored benchmark, called Corpus-Transcriptional-Regulation (CTR); (5) to carry out a study on the impact of the pre-processing stages and Named Entity Recognition (NER) tools on the performance of the sentence similarity methods; and finally, (6) to bridge the lack of software and data reproducibility resources for methods and experiments in this line of research. Our reproducible experimental survey is based on a single software platform, which is provided with a detailed reproducibility protocol and dataset as supplementary material to allow the exact replication of all our experiments and results. In addition, we introduce a new aggregated string-based sentence similarity method, called LiBlock, together with eight variants of current ontology-based methods, and a new pre-trained word embedding model trained on the full-text articles in the PMC-BioC corpus. Our experiments show that our novel string-based measure establishes the new state of the art in sentence similarity analysis in the biomedical domain and significantly outperforms all the methods evaluated herein, with the only exception of one ontology-based method. Likewise, our experiments confirm that the pre-processing stages, and the choice of the NER tool for ontology-based methods, have a very significant impact on the performance of the sentence similarity methods. We also detail some drawbacks and limitations of current methods, and highlight the need to refine the current benchmarks. Finally, a notable finding is that our new string-based method significantly outperforms all state-of-the-art Machine Learning (ML) models evaluated herein.


Subject(s)
Language , Software , Reproducibility of Results , Algorithms , Machine Learning
3.
BMC Bioinformatics ; 23(1): 23, 2022 Jan 06.
Article in English | MEDLINE | ID: mdl-34991460

ABSTRACT

BACKGROUND: Ontology-based semantic similarity measures based on SNOMED-CT, MeSH, and Gene Ontology are being extensively used in many applications in biomedical text mining and genomics respectively, which has encouraged the development of semantic measures libraries based on the aforementioned ontologies. However, current state-of-the-art semantic measures libraries have some performance and scalability drawbacks derived from their ontology representations based on relational databases, or naive in-memory graph representations. Likewise, a recent reproducible survey on word similarity shows that one hybrid IC-based measure which integrates a shortest-path computation sets the state of the art in the family of ontology-based semantic measures. However, the lack of an efficient shortest-path algorithm for their real-time computation prevents both their practical use in any application and the use of any other path-based semantic similarity measure. RESULTS: To bridge the two aforementioned gaps, this work introduces for the first time an updated version of the HESML Java software library especially designed for the biomedical domain, which implements the most efficient and scalable ontology representation reported in the literature, together with a new method for the approximation of the Dijkstra's algorithm for taxonomies, called Ancestors-based Shortest-Path Length (AncSPL), which allows the real-time computation of any path-based semantic similarity measure. CONCLUSIONS: We introduce a set of reproducible benchmarks showing that HESML outperforms by several orders of magnitude the current state-of-the-art libraries in the three aforementioned biomedical ontologies, as well as the real-time performance and approximation quality of the new AncSPL shortest-path algorithm. Likewise, we show that AncSPL linearly scales regarding the dimension of the common ancestor subgraph regardless of the ontology size. Path-based measures based on the new AncSPL algorithm are up to six orders of magnitude faster than their exact implementation in large ontologies like SNOMED-CT and GO. Finally, we provide a detailed reproducibility protocol and dataset as supplementary material to allow the exact replication of all our experiments and results.


Subject(s)
Biological Ontologies , Semantics , Medical Subject Headings , Reproducibility of Results , Systematized Nomenclature of Medicine
4.
PLoS One ; 16(3): e0248663, 2021.
Article in English | MEDLINE | ID: mdl-33760855

ABSTRACT

Measuring semantic similarity between sentences is a significant task in the fields of Natural Language Processing (NLP), Information Retrieval (IR), and biomedical text mining. For this reason, the proposal of sentence similarity methods for the biomedical domain has attracted a lot of attention in recent years. However, most sentence similarity methods and experimental results reported in the biomedical domain cannot be reproduced for multiple reasons as follows: the copying of previous results without confirmation, the lack of source code and data to replicate both methods and experiments, and the lack of a detailed definition of the experimental setup, among others. As a consequence of this reproducibility gap, the state of the problem can be neither elucidated nor new lines of research be soundly set. On the other hand, there are other significant gaps in the literature on biomedical sentence similarity as follows: (1) the evaluation of several unexplored sentence similarity methods which deserve to be studied; (2) the evaluation of an unexplored benchmark on biomedical sentence similarity, called Corpus-Transcriptional-Regulation (CTR); (3) a study on the impact of the pre-processing stage and Named Entity Recognition (NER) tools on the performance of the sentence similarity methods; and finally, (4) the lack of software and data resources for the reproducibility of methods and experiments in this line of research. Identified these open problems, this registered report introduces a detailed experimental setup, together with a categorization of the literature, to develop the largest, updated, and for the first time, reproducible experimental survey on biomedical sentence similarity. Our aforementioned experimental survey will be based on our own software replication and the evaluation of all methods being studied on the same software platform, which will be specially developed for this work, and it will become the first publicly available software library for biomedical sentence similarity. Finally, we will provide a very detailed reproducibility protocol and dataset as supplementary material to allow the exact replication of all our experiments and results.


Subject(s)
Data Mining , Natural Language Processing , PubMed , Semantics , Software , Language , Surveys and Questionnaires
5.
Data Brief ; 26: 104432, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31516953

ABSTRACT

This data article introduces a reproducibility dataset with the aim of allowing the exact replication of all experiments, results and data tables introduced in our companion paper (Lastra-Díaz et al., 2019), which introduces the largest experimental survey on ontology-based semantic similarity methods and Word Embeddings (WE) for word similarity reported in the literature. The implementation of all our experiments, as well as the gathering of all raw data derived from them, was based on the software implementation and evaluation of all methods in HESML library (Lastra-Díaz et al., 2017), and their subsequent recording with Reprozip (Chirigati et al., 2016). Raw data is made up by a collection of data files gathering the raw word-similarity values returned by each method for each word pair evaluated in any benchmark. Raw data files were processed by running a R-language script with the aim of computing all evaluation metrics reported in (Lastra-Díaz et al., 2019), such as Pearson and Spearman correlation, harmonic score and statistical significance p-values, as well as to generate automatically all data tables shown in our companion paper. Our dataset provides all input data files, resources and complementary software tools to reproduce from scratch all our experimental data, statistical analysis and reported data. Finally, our reproducibility dataset provides a self-contained experimentation platform which allows to run new word similarity benchmarks by setting up new experiments including other unconsidered methods or word similarity benchmarks.

SELECTION OF CITATIONS
SEARCH DETAIL
...