Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Clim Dyn ; 58(7-8): 2109-2130, 2022.
Article in English | MEDLINE | ID: mdl-35509809

ABSTRACT

The predictability of the Northern Hemisphere stratosphere and its underlying dynamics are investigated in five state-of-the-art seasonal prediction systems from the Copernicus Climate Change Service (C3S) multi-model database. Special attention is devoted to the connection between the stratospheric polar vortex (SPV) and lower-stratosphere wave activity (LSWA). We find that in winter (December to February) dynamical forecasts initialised on the first of November are considerably more skilful than empirical forecasts based on October anomalies. Moreover, the coupling of the SPV with mid-latitude LSWA (i.e., meridional eddy heat flux) is generally well reproduced by the forecast systems, allowing for the identification of a robust link between the predictability of wave activity above the tropopause and the SPV skill. Our results highlight the importance of November-to-February LSWA, in particular in the Eurasian sector, for forecasts of the winter stratosphere. Finally, the role of potential sources of seasonal stratospheric predictability is considered: we find that the C3S multi-model overestimates the stratospheric response to El Niño-Southern Oscillation (ENSO) and underestimates the influence of the Quasi-Biennial Oscillation (QBO). Supplementary Information: The online version supplementary material available at 10.1007/s00382-021-05787-9.

2.
Sci Rep ; 9(1): 13358, 2019 09 16.
Article in English | MEDLINE | ID: mdl-31527623

ABSTRACT

Northern Hemisphere western boundary currents, like the Gulf Stream, are key regions for cyclogenesis affecting large-scale atmospheric circulation. Recent observations and model simulations with high-temporal and -spatial resolution have provided evidence that the associated ocean fronts locally affect troposphere dynamics. A coherent view of how this affects the mean climate and its variability is, however, lacking. In particular the separate role of resolved ocean and atmosphere dynamics in shaping the atmospheric circulation is still largely unknown. Here we demonstrate for the first time, by using coupled seasonal forecast experiments at different resolutions, that resolving meso-scale oceanic variability in the Gulf Stream region strongly affects mid-latitude interannual atmospheric variability, including the North Atlantic Oscillation. Its impact on climatology, however, is minor. Increasing atmosphere resolution to meso-scale, on the other hand, strongly affects mean climate but moderately its variability. We also find that regional predictability relies on adequately resolving small-scale atmospheric processes, while resolving small-scale oceanic processes acts as an unpredictable source of noise, except for the North Atlantic storm-track where the forcing of the atmosphere translates into skillful predictions.

3.
Santa Cruz, 2002; .
Thesis in Spanish | LILACS-Express | LIBOCS, LIBOSP | ID: biblio-1324350
4.
Santa Cruz, 2002; .
Thesis in Spanish | LILACS-Express | LIBOCS, LIBOSP | ID: biblio-1330758
SELECTION OF CITATIONS
SEARCH DETAIL
...