Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38732785

ABSTRACT

Given the high relevance and impact of ransomware in companies, organizations, and individuals around the world, coupled with the widespread adoption of mobile and IoT-related devices for both personal and professional use, the development of effective and efficient ransomware mitigation schemes is a necessity nowadays. Although a number of proposals are available in the literature in this line, most of them rely on machine-learning schemes that usually involve high computational cost and resource consumption. Since current personal devices are small and limited in capacities and resources, the mentioned schemes are generally not feasible and usable in practical environments. Based on a honeyfile detection solution previously introduced by the authors for Linux and Window OSs, this paper presents a ransomware detection tool for Android platforms where the use of trap files is combined with a reactive monitoring scheme, with three main characteristics: (i) the trap files are properly deployed around the target file system, (ii) the FileObserver service is used to early alert events that access the traps following certain suspicious sequences, and (iii) the experimental results show high performance of the solution in terms of detection accuracy and efficiency.

2.
Sensors (Basel) ; 24(2)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38257574

ABSTRACT

With the significant increase in cyber-attacks and attempts to gain unauthorised access to systems and information, Network Intrusion-Detection Systems (NIDSs) have become essential detection tools. Anomaly-based systems use machine learning techniques to distinguish between normal and anomalous traffic. They do this by using training datasets that have been previously gathered and labelled, allowing them to learn to detect anomalies in future data. However, such datasets can be accidentally or deliberately contaminated, compromising the performance of NIDS. This has been the case of the UGR'16 dataset, in which, during the labelling process, botnet-type attacks were not identified in the subset intended for training. This paper addresses the mislabelling problem of real network traffic datasets by introducing a novel methodology that (i) allows analysing the quality of a network traffic dataset by identifying possible hidden or unidentified anomalies and (ii) selects the ideal subset of data to optimise the performance of the anomaly detection model even in the presence of hidden attacks erroneously labelled as normal network traffic. To this end, a two-step process that makes incremental use of the training dataset is proposed. Experiments conducted on the contaminated UGR'16 dataset in conjunction with the state-of-the-art NIDS, Kitsune, conclude with the feasibility of the approach to reveal observations of hidden botnet-based attacks on this dataset.

SELECTION OF CITATIONS
SEARCH DETAIL
...