Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 914: 169960, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38211850

ABSTRACT

Microplastics are a global ecological concern due to their potential risk to wildlife and human health. Animals ingest microplastics, which can enter the trophic chain and ultimately impact human well-being. The ingestion of microplastics can cause physical and chemical damage to the animals' digestive systems, affecting their health. To estimate the risk to ecosystems and human health, it is crucial to understand the accumulation and localization of ingested microplastics within the cells and tissues of living organisms. However, analyzing this issue is challenging due to the risk of sample contamination, given the ubiquity of microplastics. Here, an analytical approach is employed to confirm the internalization of microplastics in cryogenic cross-sections of mussel tissue. Using 3D Raman confocal microscopy in combination with chemometrics, microplastics measuring 1 µm in size were detected. The results were further validated using optical and fluorescence microscopy. The findings revealed evidence of microplastics being internalized in the digestive epithelial tissues of exposed mussels (Mytilus galloprovincialis), specifically within the digestive cells forming digestive alveoli. This study highlights the need to investigate the internalization of microplastics in organisms like mussels, as it helps us understand the potential risks they pose to aquatic biota and ultimately to human health. By employing advanced imaging techniques, challenges associated with sample contamination can be overcome and valuable insights into the impact of microplastics on marine ecosystems and human consumers are provided.


Subject(s)
Mytilus , Water Pollutants, Chemical , Animals , Humans , Microplastics/toxicity , Plastics/toxicity , Ecosystem , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Mytilus/chemistry , Environmental Monitoring/methods
2.
Ecotoxicol Environ Saf ; 266: 115577, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37839184

ABSTRACT

The use of Plant Protection Products (PPPs) is leading to high exposure scenarios with potential risk to soil organisms, including non-target species. Assessment of the effects of PPPs on non-target organisms is one of the most important components of environmental risk assessment (ERA) since they play crucial functions in ecosystems, being main driving forces in different soil processes. As part of the framework, EFSA is proposing the use of the ecosystem services approach for setting specific protection goals. In fact, the services provided by soil organisms can be impacted by the misuse of PPPs in agroecosystems. The aim of this work was to assess PPPs potential risk upon ecosystem services along European soils, considering impacts on earthworms and collembola. Four well-known (2 insecticides-esfenvalerate and cyclaniliprole- and 2 fungicides - picoxystrobin and fenamidone-) worst case application (highest recommended application) were studied; exploring approaches for linked observed effects with impacts on ecosystem services, accounting for their mode of action (MoA), predicted exposure, time-course effects in Eisenia fetida and Folsomia sp. and landscape variability. The selected fungicides exerted more effects than insecticides on E. fetida, whereas few effects were reported for both pesticides regarding Folsomia sp. The most impacted ecosystem services after PPP application to crops appeared to be habitat provision, soil formation and retention, nutrient cycling, biodiversity, erosion regulation, soil remediation/waste treatment and pest and disease regulation. The main factors to be taken into account for a correct PPP use management in crops are discussed.


Subject(s)
Arthropods , Fungicides, Industrial , Insecticides , Animals , Ecosystem , Fungicides, Industrial/pharmacology , Insecticides/toxicity , Soil , Risk Assessment
3.
Sci Total Environ ; 876: 162810, 2023 Jun 10.
Article in English | MEDLINE | ID: mdl-36921855

ABSTRACT

The presence of microplastics in the food chain is a public concern worldwide, and its analysis is an analytical challenge. In our research, we apply Raman imaging to study the presence of 1 µm polystyrene microplastics in cryosections of Mytilus galloprovincialis due to its wide geographic distribution, widespread occurrence in the food web, and general high presence in the environment. Ingested microplastics are accumulated in the digestive tract, but a large number can also be rapidly eliminated. Some authors state that the translocation of microplastics to the epithelial cells is possible, increasing the risk of microplastics transmission along the food chain. However, as seen in our study, a surface imaging approach (2D) is probably not enough to confirm the internalization of particles and avoid misinterpretation. In fact, while some microplastic particles were detected in the epithelium by 2D Raman imaging, further 3D Raman imaging analysis demonstrated that those particles were dragged from the lumens to the epithelium during sample preparation due to the blade drag effect of the cryotome, and subsequently located on the surface of the analyzed cryosection, discarding the translocation to the epithelial cells. This effect can also happen when the samples are fortuitously contaminated during sample preparation. Several research articles that use similar analytical techniques have shown the presence of microplastics in different types of tissue. It is not our intention to put such results in doubt, but the present work points out the necessity of appropriate three-dimensional analytical methods including data interpretation and the need to go a step further than just surface imaging analysis.


Subject(s)
Mytilus , Water Pollutants, Chemical , Animals , Microplastics , Plastics/analysis , Water Pollutants, Chemical/analysis , Polystyrenes/analysis , Environmental Monitoring
4.
Chemosphere ; 311(Pt 2): 137087, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36332739

ABSTRACT

The majority of the plastic produced in the last century is accumulated in the environment, leading to an exacerbated contamination of marine environments due to transport from land to the ocean. In the ocean, mechanical abrasion, oxidation, and photodegradation degrade large plastics into microplastics (MPs) - 0.1 µm to 5 mm (EFSA, 2016) which are transported through water currents reaching the water surface, water column, and sediments. Further, they can be accumulated by aquatic and benthic species, entering the trophic chain and becoming a potential threat to humans. In the present research, we aimed to decipher the accumulation and distribution time-courses between different organs or target tissues of organisms inhabiting coastal areas such as mussels Mytilus galloprovincialis and polychaetes Hediste diversicolor. Both were exposed in microcosm experiments to fluorescent polystyrene MPs (1 µm) which were spiked at two doses (103 and 105 particles/mL) for 1, 4, 24, and 72 h. Mussels and polychaetes were digested with 10% KOH and filtered to quantify the number of MPs incorporated. Different anatomical parts of the body were selected and processed for cryosectioning and posterior microscopic localisation of MPs. Both species accumulate MPs spiked in water column, mainly after exposure to the highest dose. In mussels, particles were found in distinct parts of the digestive tract (stomach, digestive diverticula, ducts) and gills. Even if the majority of MPs were localised in the lumen of the digestive tract, in some cases, were inside the digestive epithelium. The identification of MPs and their internalization in the digestive system was studied using Raman spectroscopy. A decreasing trend with time regarding MPs number in the digestive tract (stomach) of mussels was observed while the opposite was recorded for polychaetes and sediments. The combination of microscopical observations of frozen sections and Raman, appeared to be accurate methodologies to address MPs abundances and to reveal their localisation in different organs. This work has enabled to understand the distribution and fate of MPs in different environmental compartments and it could contribute to gain knowledge about their impact after ingestion by coastal organisms.

5.
Chemosphere ; 303(Pt 2): 135045, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35609662

ABSTRACT

Plant Protection Products (PPP) raise concerns as their application may cause effects on some soil organisms considered non-target species which could be highly sensitive to some pesticides. The European Food and Safety Authority (EFSA), in collaboration with the Joint Research Centre (JRC) of the European Commission, has developed guidance and a software tool, Persistence in Soil Analytical Model (PERSAM), for conducting soil exposure assessments. EFSA PPR Panel has published recommendations for the risk assessment of non-target soil organisms. We have used PERSAM for calculating PPPs predicted environmental concentrations (PECs); and used the estimated PEC for assessing potential risks using Toxicity Exposure Ratios (TER) for selected soil organisms and good agricultural practices. Soil characteristics and environmental variables change along a latitudinal axis through the European continent, influencing the availability of PPP, their toxicity upon soil biota, and hence, impacting on the risk characterization. Although PERSAM includes as input geographical information, the information is aggregated and not further detailed in the model outputs. Therefore, there is a need to develop landscape based environmental risk assessment methods addressing regional variability. The objective was to integrate spatially explicit exposure (PECs) and effect data (biological endpoints i.e. LC50, NOEC, etc.) to estimate the risk quotient (TER) of four PPP active substances (esfenvalerate, cyclaniliprole, picoxystrobin, fenamidone) on non-target species accounting European landscape and agricultural variability. The study was focused on the effects produced by the above-mentioned pesticides on two soil organisms: E. fetida earthworms and Folsomia sp. collembolans. After running PERSAM assuming a worst case application of PPPs, PECs in total soil and pore water were obtained for different depths in northern, central and southern European soils. With this data, soil variability and climatic differences among soils divided in three large Euroregions along a latitudinal transect (Northern, Central, Southern Europe) were analysed. Summarising, a trend to accumulate higher PECs and TERs in total soil was observed in the north decreasing towards the south. Higher PECs and TERs could be expected in pore water in southern soils, decreasing towards the north. The risk disparity between pollutant concentrations at different soils compartments should be taken into account for regulatory purposes, as well as the potential landscape variabilities among different Euroregions.


Subject(s)
Oligochaeta , Pesticides , Soil Pollutants , Agriculture , Animals , Pesticides/analysis , Pesticides/toxicity , Risk Assessment , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity , Water/analysis
6.
Article in English | MEDLINE | ID: mdl-35114392

ABSTRACT

During years sewage sludges have been worldwide poured in agricultural soils to enhance vegetal production. The "Landfill 17" located in Gernika-Lumo town (43°19'28.9"N 2°40'30.9"W) received for decades sewage sludges from the local Waste Water Treatment Plant (WWTP) with agricultural purposes. To this WWTP, several pollutants as heavy metals (Cd, Cr, Ni, Pb), PAHs (benzo(a)pyrene among many others) and pesticides (i.e. dieldrin) could have arrived from local industry and be widespread all over the landfill. Soil invertebrates like earthworms and plants are of special interest due to their close contact with the polluted matrix and their potential effects by the presence of pollutants. In this context, the aim of the present work was to determine the health status of landfill soils by evaluating the effects on model soil organisms exerted by long-lasted pollutants after on site deposition of WWTP active sludges. With such a purpose, different standard toxicity tests and cellular level endpoints were performed on lettuce and earthworms. Indeed, germination (EPA 850.4100) and root elongation (EPA 850.4230) tests were carried out in Lactuca sativa, while OECD acute toxicity test (OECD-204), reproduction test (OECD-222) and Calcein-AM viability test with coelomocytes were applied in Eisenia fetida worms. For the exposure, soils collected in the landfield containing low, medium and high concentrations of pollutants were selected, and as reference LUFA 2.3 natural standard soil was chosen. While no differences were shown in the assays with L. sativa, significant differences between sludge exposed groups and control group were recorded with E. fetida, with lower coelomocyte number and viability and higher tissue metal accumulation after 28 days of exposure to polluted soils. These results confirmed the impact of contaminants to soil biota even after long periods of time.


Subject(s)
Agriculture , Environmental Pollutants/toxicity , Metals/toxicity , Sewage/chemistry , Soil , Animals , Environmental Pollutants/chemistry , Germination , Lactuca/drug effects , Metals/chemistry , Oligochaeta/drug effects , Seeds/drug effects
7.
Sci Total Environ ; 766: 144099, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33421774

ABSTRACT

Increasing soil loss and the scarcity of useful land requires new reusing strategies. Thus, recovery of polluted soils recovery offers a chance for economic and social regeneration. With this objective, different soil cleaning technologies have been developed during the last few decades. On one hand, classical physical and/or chemical technologies can be found which are efficient, but have high costs and impacts upon ecosystems. On the other hand, biological methods (such as phytoremediation, bioremediation and vermiremediation) are relatively cost effective and eco-friendly, but also more time-consuming. These biological methods and their yields have been widely studied but little is known about the interaction between different soil cleaning methods. The combination of different biological strategies could lead to an improvement in remediation performance. Hence, in the present work, different micro-, vermi- and phyto-remediation combinations are applied in a sewage sludge polluted landfill in Gernika-Lumo (Basque Country) which was used as a disposal point for decades, in search of the treatment (single) or combination (dual or triple) of treatments with best remediation yields. Eight experimental groups were applied (n=3) placing earthworms (E), bacteria (B), plants (P), bacteria+earthworms (B+E), bacteria+plants (B+P), plants+earthworms (P+E) plants+bacteria+earthworms (P+B+E) and a non-treated (N.T.) group in the experimental plot (Landfill 17), for 12 months. In order to assess the efficiency of each treatment, a complete characterization (chemical and ecotoxicological) was carried out before and after remediation. Results showed high removal rates for dieldrin (between 50% and 78%) in all the experimental groups. In contrast, removal rates around 20-25% were achieved for heavy metals (Cd 15%-35%; Ni 24%-37%; Pb 15%-33%; Cr 7%-39%) and benzo(a)pyrene (19.5%-28%). The highest reductions were observed in dual (P+E, B+E) and triple (P+B+E) treatments. The best elimination yields were obtained after P+B+E treatment, as highlighted by the battery of ecotoxicological tests and bioassays performed with earthworms, plants and bacteria.


Subject(s)
Metals, Heavy , Soil Pollutants , Animals , Biodegradation, Environmental , Ecosystem , Metals, Heavy/analysis , Sewage , Soil , Soil Pollutants/analysis
8.
Article in English | MEDLINE | ID: mdl-32142922

ABSTRACT

Several ecotoxicological studies assessed metal toxicity upon soil biota and other communities but were mainly focused on the study of a single chemical and usually under optimal conditions of temperature. Meanwhile an increasing global warming is leading to new scenarios by combining different stress factors; chemical stress and thermal stress. Presently, this study aims to assess the joint effects produced by cadmium and elevated temperature on earthworms different levels of biological complexity. Eisenia fetida earthworms were maintained at 19 °C and 26 °C and simultaneously exposed to four Cd concentrations (1.25, 2.5, 25 and 125 mg Cd/Kg soil) for 14 (Short term exposure) and 56 days (reproduction test). Endpoints were addressed at different levels of biological complexity: reproductive impairment (cocoons and juvenile productions), Cd tissue accumulation, mortality of adults, weight loss and cytotoxic effects (coelomocyte viability). In the Short term exposure, increase in temperature produced a larger accumulation of Cd. Hence, earthworms exposed to 125 mg Cd/kg soil under heat stress (26 °C) showed a two fold higher Cd accumulation comparing to those at 19 °C. Earthworms exposed to moderate-high concentrations of Cd (2.5-125 mg Cd/kg) and maintained at 26 °C showed severe weight loss and high mortality rates. The neutral red uptake capacity of coelomocytes extruded from earthworms exposed to the highest Cd concentration decreased after 14 d at 19 °C, and more markedly at 26 °C. The reproduction impairment (decreased number of cocoons) was enhanced after exposure to concentrations higher than 2.5 mg Cd/kg at 26 °C, and after exposure to 125 mg Cd/kg at 19 °C. Earthworm reproduction capability is highly vulnerable to the effect of toxicants at elevated temperatures and sublethal concentrations.


Subject(s)
Cadmium/toxicity , Oligochaeta/metabolism , Soil Pollutants/toxicity , Stress, Physiological , Temperature , Animals
9.
Ecotoxicol Environ Saf ; 181: 255-263, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31200198

ABSTRACT

Bioremediation using actinobacterium consortia proved to be a promising alternative for the purification of co-contaminated environments. In this sense, the quadruple consortium composed of Streptomyces sp. M7, MC1, A5, and Amycolatopsis tucumanensis AB0 has been able to remove significant levels of Cr(VI) and lindane from anthropogenically contaminated soils. However, the effectiveness of the bioremediation process could not be evaluated only by analytical monitoring, which is complex mainly due to the characteristics of the matrix, producing non-quantitative analyte recoveries, or interferences in the detection stage and quantification. However, the effectiveness of the bioremediation process cannot be evaluated only through analytical monitoring, which is complex due mainly to the characteristics of the matrix, to the recoveries of non-quantitative analytes or to interferences in the detection and quantification stage. For this reason, it is essential to have tools of ecological relevance to assess the biological impact of pollutants on the environment. In this context, the objective of this work was to establish the appropriate bioassays to evaluate the effectiveness of a bioremediation process of co-contaminated soils. For this, five model species were studied: four plant species (Lactuca sativa, Raphanus sativus, Lycopersicon esculentum, and Zea mays) and one animal species (Eisenia fetida). On plant species, the biomarkers evaluated were inhibition of germination (IG) and the length of hypocotyls/steam and radicles/roots of the seedling. While on E. fetida, mortality (M), weight lost, coelomocyte concentration and cell viability were tested. These bioindicators and the battery of biomarkers quantified in them showed a different level of sensitivity, from maximum to minimum: E. fetida > L. esculentum > L. sativa > R. sativus ≫>Z. mays. Therefore, E. fetida and L. esculentum and their respective biomarkers were selected to evaluate the effectiveness of the bioremediation process due to the capability of assessing the effect on the flora and the fauna of the soil, respectively. The joint application of these bioindicators in a field scale bioremediation process is a feasible tool to demonstrate the recovery of the quality and health of the soil.


Subject(s)
Actinobacteria/metabolism , Chromium/toxicity , Hexachlorocyclohexane/toxicity , Soil Pollutants/toxicity , Animals , Biodegradation, Environmental , Chromium/metabolism , Environmental Biomarkers , Hexachlorocyclohexane/metabolism , Microbial Consortia , Oligochaeta/drug effects , Plant Development/drug effects , Sentinel Species , Soil Pollutants/metabolism , Streptomyces/metabolism
10.
Ecotoxicology ; 25(8): 1543-1555, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27614742

ABSTRACT

Despite the increasing interest in silver nanoparticles toxicity still few works dealt with the hazards of nanosized Ag in soils (either dissolved in pore water or coupled to colloids) although disposal of biosolids in landfills has been reported as the major source of silver nanoparticles in terrestrial environments. Presently, Eisenia fetida was used to assess the toxicity of 5 nm sized PVP-PEI coated silver nanoparticles in soil through the implementation of different exposure media Standard Toxicity Tests (Paper Contact and Artificial Soil -OECD-207- and Reproduction -OECD-222- Tests) together with cellular biomarkers measured in extruded coelomocytes. In order to decipher the mode of action of silver nanoparticles in soil and the uptake routes in earthworms, special attention was given to the Ag accumulation and distribution in tissues. High Ag accumulation rates, weight loss, and mortality due to the disruption of the tegument could be the result of a dermal absorption of Ag ions released from silver nanoparticles (Paper Contact Test). However, autometallography showed metals mainly localized in the digestive tract after Artificial Soil Test, suggesting that Ag uptake occurred mostly through soil ingestion. That is, silver nanoparticles attached to soil colloids seemed to be internalized in earthworms after ingestion of soil and transferred to the digestive gut epithelium where at high doses they have triggered severe effects at different levels of biological complexity.


Subject(s)
Metal Nanoparticles/toxicity , Oligochaeta/physiology , Silver/metabolism , Soil Pollutants/metabolism , Toxicity Tests/methods , Animals , Organisation for Economic Co-Operation and Development , Silver/toxicity , Soil , Soil Pollutants/toxicity , Toxicity Tests/standards
11.
Ecotoxicology ; 24(5): 1004-13, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25762103

ABSTRACT

Coelomocytes comprise the immune system of earthworms and due to their sensitivity responding to a wide range of pollutants have been widely used as target cells in soil ecotoxicology. Recently, in vitro assays with primary cultures of coelomocytes based in the neutral red uptake (NRU) assay have been developed as promising tools for toxicity assessment chemical in a reproducible and cost-effective manner. However, NRU showed a bimodal dose-response curve previously described after in vivo and in vitro exposure of earthworm coelomocytes to pollutants. This response could be related with alterations in the relative proportion of coelomocyte subpopulations, amoebocytes and eleocytes. Thus, the aims of the present work were, first, to establish the toxicity thresholds that could be governed by different cell-specific sensitivities of coelomocytes subpopulations against a series of metals (Cu, Cd, Pb, Ni), and second to understand the implication that coelomocyte population dynamics (eleocytes vs. amoebocytes) after exposure to pollutants can have on the viability of coelomocytes (measured by NRU assay) as biomarker of general stress in soil health assessment. Complementarily flow cytometric analyses were applied to obtain correlative information about single cells (amoebocytes and eleocytes) in terms of size and complexity, changes in their relative proportion and mortality rates. The results indicated a clear difference in sensitivity of eleocytes and amoebocytes against metal exposure, being eleocytes more sensitive. The bimodal dose-response curve of NRU after in vitro exposure of primary cultures of coelomocytes to metals revealed an initial mortality of eleocytes (decreased NRU), followed by an increased complexity of amoebocytes (enhanced phagocytosis) and massive mortality of eleocytes (increased NRU), to give raise to a massive mortality of amoebocytes (decrease NRU). A synergistic effect on NRU was exerted by the exposure to high Cu concentrations and acidic pH (elicited by the metal itself), whereas the effects on NRU produced after exposure to Cd, Ni and Pb were due solely to the presence of metals, being the acidification of culture medium meaningless.


Subject(s)
Metals, Heavy/toxicity , Oligochaeta/drug effects , Soil Pollutants/toxicity , Animals , Biomarkers/metabolism , Cost-Benefit Analysis , Dose-Response Relationship, Drug , Environmental Exposure , Metals, Heavy/administration & dosage , Neutral Red/metabolism , Oligochaeta/cytology , Reproducibility of Results , Toxicity Tests/economics , Toxicity Tests/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...