Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Ophthalmol ; 22(1): 502, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36539722

ABSTRACT

BACKGROUND: Optic nerve trauma caused by crush injury is frequently used for investigating experimental treatments that protect retinal ganglion cells (RGCs) and induce axonal regrowth. Retaining outer retinal light responses is essential for therapeutic rescue of RGCs after injury. However, whether optic nerve crush also damages the structure or function of photoreceptors has not been systematically investigated. In this study, we investigated whether outer retinal thickness and visual function are altered by optic nerve crush in the mouse. METHODS: Wildtype mice underwent optic nerve crush and intravitreal injection of a control solution in one eye with the fellow eye remaining uninjured. Two weeks after injury, the thickness of the ganglion cell region (GCL to IPL) and photoreceptor layer (bottom of the OPL to top of the RPE) were measured using OCT. Retinal function was assessed using flash ERGs. Immunodetection of RGCs was performed on retinal cryosections and RGCs and ONL nuclei rows were counted. Multiple comparison analyses were conducted using Analysis of Variance (ANOVA) with Tukey's post hoc test and P values less than 0.05 were considered statistically significant. RESULTS: Optic nerve crush injury induced RGC death as expected, demonstrated by thinning of the ganglion cell region and RGC loss. In contrast, outer retinal thickness, photopic and scotopic a-wave and b-wave amplitudes and photoreceptor nuclei counts, were equivalent between injured and uninjured eyes. CONCLUSIONS: Secondary degeneration of the outer retina was not detected after optic nerve injury in the presence of significant RGC death, suggesting that the retina has the capacity to compartmentalize damage. These findings also indicate that experimental treatments to preserve the GCL and rescue vision using this optic nerve injury model would not require additional strategies to preserve the ONL.


Subject(s)
Crush Injuries , Optic Nerve Injuries , Mice , Animals , Retina , Retinal Ganglion Cells , Optic Nerve , Crush Injuries/complications , Crush Injuries/metabolism , Nerve Crush , Disease Models, Animal
2.
Curr Pain Headache Rep ; 26(12): 895-918, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36418848

ABSTRACT

PURPOSE OF REVIEW: The aim of this review is to characterize headache as a vaccine adverse event (VAE) in clinical trials. RECENT FINDINGS: Of the recent phase III vaccine RCTs (non-COVID-19), 53 studies reported on headache (13 infectious agents). The median rate (interquartile range) of headache was 15.6% (IQR: 9.6-37.6%). Of these, 24.5% of the RCTs reported headache greater in the vaccine group compared to the placebo/control group. In the herpes zoster vaccination trials, headache was more common in all active groups: median rate 33.9% (IQR: 29.7-40.5%) as compared to placebo: median rate 17.7% (IQR: 15.4-23.8%). Influenza and HPV vaccination trials were the 2nd and 3rd most common to have headache as a VAE. Of the 6 widely distributed COVID-19 vaccinations, median rate of post-vaccination headache was 39% (IQR: 28-50%). Headache is a common VAE in vaccine trials. Standardized grading methods, predictors of persistence, and treatment regimens are warranted.


Subject(s)
COVID-19 , Vaccines , Humans , COVID-19/prevention & control , Vaccination/adverse effects , Headache/etiology
3.
J Neuroinflammation ; 19(1): 216, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36064575

ABSTRACT

BACKGROUND: Retinal degenerative diseases are a group of conditions characterized by photoreceptor death and vision loss. Excessive inflammation and microglial activation contribute to the pathology of retinal degenerations and a major focus in the field is identifying more effective anti-inflammatory therapeutic strategies that promote photoreceptor survival. A major challenge to developing anti-inflammatory treatments is to selectively suppress detrimental inflammation while maintaining beneficial inflammatory responses. We recently demonstrated that endogenous levels of the IL-27 cytokine were upregulated in association with an experimental treatment that increased photoreceptor survival. IL-27 is a pleiotropic cytokine that regulates tissue reactions to infection, neuronal disease and tumors by inducing anti-apoptotic and anti-inflammatory genes and suppressing pro-inflammatory genes. IL-27 is neuroprotective in the brain, but its function during retinal degeneration has not been investigated. In this study, we investigated the effect of IL-27 in the rd10 mouse model of inherited photoreceptor degeneration. METHODS: Male and female rd10 mice were randomly divided into experimental (IL-27) and control (saline) groups and intravitreally injected at age post-natal day (P) 18. Retina function was analyzed by electroretinograms (ERGs), visual acuity by optomotor assay, photoreceptor death by TdT-mediated dUTP nick-end labeling (TUNEL) assay, microglia/macrophage were detected by immunodetection of IBA1 and inflammatory mediators by cytoplex and QPCR analysis. The distribution of IL-27 in the retina was determined by immunohistochemistry on retina cross-sections and primary Muller glia cultures. RESULTS: We demonstrate that recombinant IL-27 decreased photoreceptor death, increased retinal function and reduced inflammation in the rd10 mouse model of retinal degeneration. Furthermore, IL-27 injections led to lower levels of the pro-inflammatory proteins Ccl22, IL-18 and IL-12. IL-27 expression was localized to Muller glia and IL-27 receptors to microglia, which are key cell types that regulate photoreceptor survival. CONCLUSION: Our results identify for the first time anti-inflammatory and neuroprotective activities of IL-27 in a genetic model of retinal degeneration. These findings provide new insight into the therapeutic potential of anti-inflammatory cytokines as a treatment for degenerative diseases of the retina.


Subject(s)
Interleukin-27 , Retinal Degeneration , Animals , Anti-Inflammatory Agents/therapeutic use , Cytokines , Disease Models, Animal , Female , Inflammation/drug therapy , Male , Mice , Retinal Degeneration/pathology
4.
Neural Regen Res ; 17(10): 2149-2152, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35259821

ABSTRACT

Interleukin-27 is a pleiotropic cytokine that is involved in tissue responses to infection, cell stress, neuronal disease, and tumors. Recent studies in various tissues indicate that interleukin-27 has complex activating and inhibitory properties in innate and acquired immunity. The availability of recombinant interleukin-27 protein and mice with genetic deletions of interleukin-27, its receptors and signaling mediators have helped define the role of interleukin-27 in neurodegenerative diseases. Interleukin-27 has been well-characterized as an important regulator of T cell activation and differentiation that enhances or suppresses T cell responses in autoimmune conditions in the central nervous system. Evidence is also accumulating that interleukin-27 has neuroprotective activities in the retina and brain. Interleukin-27 is secreted from and binds to infiltrating microglia, macrophage, astrocytes, and even neurons and it promotes neuronal survival by regulating pro- and anti-inflammatory cytokines, neuroinflammatory pathways, oxidative stress, apoptosis, autophagy, and epigenetic modifications. However, interleukin-27 can have the opposite effect and induce inflammation and cell death in certain situations. In this review, we describe the current understanding of regulatory activities of interleukin-27 on cell survival and inflammation and discuss its mechanisms of action in the brain, spinal cord, and retina. We also review evidence for and against the therapeutic potential of interleukin-27 for dampening harmful neuroinflammatory responses in central nervous system diseases.

5.
J Mol Neurosci ; 70(6): 968-980, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32072483

ABSTRACT

Myeloid differentiation factor 88 (MyD88) is an adaptor protein for the Toll-like receptor (TLR) and interleukin 1 receptor (IL-1R) families of innate immunity receptors that mediate inflammatory responses to cellular injury. TLR/IL1R/MyD88 signaling is known to contribute to retinal degeneration, although how MyD88 regulates neuronal survival, and the effect of MyD88 on the inflammatory environment in the retina, is mostly unknown. In this study, we tested the hypothesis that blocking MyD88-mediated signaling early in retinal degeneration promotes transition of microglia towards a neuroprotective anti-inflammatory phenotype, resulting in enhanced photoreceptor survival. We also tested whether systemic delivery of a pharmacologic MyD88 inhibitor has therapeutic potential. The rd10 mouse model of retinal degeneration was injected intraperitoneally with increasing doses of a MyD88 blocking peptide or control peptide early in degeneration, and inflammatory responses and photoreceptor survival were measured at specific time points using flow cytometry, cytokine profiling, and electroretinograms. Our results demonstrated that rd10 mice injected with a low dose of MyD88 inhibitor peptide showed increased rod photoreceptor function and reduced apoptosis compared with control peptide and uninjected mice. MyD88 inhibition also resulted in fewer microglia/macrophage cells in the photoreceptor layer whereas total peripheral and retinal macrophage were not changed. Furthermore, increased number of cells expressing the Arg1 marker of neuroprotective microglia in the photoreceptor layer and higher MCP-1 and anti-inflammatory cytokine IL-27 were associated with photoreceptor survival. Therefore, these data suggest that the MyD88 inhibitor modified the retina environment to become less inflammatory, leading to improved photoreceptor function and survival.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Microglia/drug effects , Myeloid Differentiation Factor 88/antagonists & inhibitors , Oligopeptides/pharmacology , Photoreceptor Cells/drug effects , Retinal Degeneration/drug therapy , Animals , Anti-Inflammatory Agents/therapeutic use , Apoptosis , Arginase/genetics , Arginase/metabolism , Cells, Cultured , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Female , Interleukin-27/genetics , Interleukin-27/metabolism , Male , Mice , Microglia/metabolism , Oligopeptides/therapeutic use , Photoreceptor Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...