Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
FASEB J ; 28(5): 2120-33, 2014 May.
Article in English | MEDLINE | ID: mdl-24497580

ABSTRACT

Secretion of proteins and neurotransmitters from large dense core vesicles (LDCVs) is a highly regulated process. Adrenal LDCV formation involves the granin proteins chromogranin A (CgA) and chromogranin B (CgB); CgA- and CgB-derived peptides regulate catecholamine levels and blood pressure. We investigated function of the granin VGF (nonacronymic) in LDCV formation and the regulation of catecholamine levels and blood pressure. Expression of exogenous VGF in nonendocrine NIH 3T3 fibroblasts resulted in the formation of LDCV-like structures and depolarization-induced VGF secretion. Analysis of germline VGF-knockout mouse adrenal medulla revealed decreased LDCV size in noradrenergic chromaffin cells, increased adrenal norepinephrine and epinephrine content and circulating plasma epinephrine, and decreased adrenal CgB. These neurochemical changes in VGF-knockout mice were associated with hypertension. Germline knock-in of human VGF1-615 into the mouse Vgf locus rescued the hypertensive knockout phenotype, while knock-in of a truncated human VGF1-524 that lacks several C-terminal peptides, including TLQP-21, resulted in a small but significant increase in systolic blood pressure compared to hVGF1-615 mice. Finally, acute and chronic administration of the VGF-derived peptide TLQP-21 to rodents decreased blood pressure. Our studies establish a role for VGF in adrenal LDCV formation and the regulation of catecholamine levels and blood pressure.


Subject(s)
Blood Pressure , Neuropeptides/genetics , Neuropeptides/metabolism , Secretory Vesicles/metabolism , Adrenal Medulla/metabolism , Angiotensin Amide/blood , Animals , Chromaffin Cells/metabolism , Chromogranin A/metabolism , Cytoplasm/metabolism , Epinephrine/blood , Gene Knock-In Techniques , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , NIH 3T3 Cells , Nerve Growth Factors , Neurotransmitter Agents/metabolism , Peptide Fragments/metabolism , Phenotype
3.
PLoS One ; 7(3): e33915, 2012.
Article in English | MEDLINE | ID: mdl-22470492

ABSTRACT

Myofibroblasts (Mfs) that persist in a healing wound promote extracellular matrix (ECM) accumulation and excessive tissue contraction. Increased levels of integrin αvß5 promote the Mf phenotype and other fibrotic markers. Previously we reported that maintaining uPA (urokinase plasminogen activator) bound to its cell-surface receptor, uPAR prevented TGFß-induced Mf differentiation. We now demonstrate that uPA/uPAR controls integrin ß5 protein levels and in turn, the Mf phenotype. When cell-surface uPA was increased, integrin ß5 levels were reduced (61%). In contrast, when uPA/uPAR was silenced, integrin ß5 total and cell-surface levels were increased (2-4 fold). Integrin ß5 accumulation resulted from a significant decrease in ß5 ubiquitination leading to a decrease in the degradation rate of internalized ß5. uPA-silencing also induced α-SMA stress fiber organization in cells that were seeded on collagen, increased cell area (1.7 fold), and increased integrin ß1 binding to the collagen matrix, with reduced activation of ß1. Elevated cell-surface integrin ß5 was necessary for these changes after uPA-silencing since blocking αvß5 function reversed these effects. Our data support a novel mechanism by which downregulation of uPA/uPAR results in increased integrin αvß5 cell-surface protein levels that regulate the activity of ß1 integrins, promoting characteristics of the persistent Mf.


Subject(s)
Receptors, Urokinase Plasminogen Activator/metabolism , Receptors, Vitronectin/metabolism , Urokinase-Type Plasminogen Activator/metabolism , Actins/metabolism , Antibodies/immunology , Cells, Cultured , Collagen/metabolism , Humans , Integrin beta1/genetics , Integrin beta1/metabolism , Myofibroblasts/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Receptors, Urokinase Plasminogen Activator/antagonists & inhibitors , Receptors, Urokinase Plasminogen Activator/genetics , Receptors, Vitronectin/immunology , Transforming Growth Factor beta/metabolism , Ubiquitination , Urokinase-Type Plasminogen Activator/antagonists & inhibitors , Urokinase-Type Plasminogen Activator/genetics
4.
Brain Res ; 1089(1): 21-32, 2006 May 17.
Article in English | MEDLINE | ID: mdl-16631141

ABSTRACT

Two novel granin-like polypeptides, VGF and pro-SAAS, which are stored in and released from secretory vesicles and are expressed widely in nervous, endocrine, and neuroendocrine tissues, play roles in the regulation of body weight, feeding, and energy expenditure. Both VGF and pro-SAAS are cleaved into peptide fragments, several of which are biologically active. We utilized a highly sensitive and specific radioimmunoassay (RIA) to immunoreactive, pro-SAAS-derived PEN peptides, developed another against immunoreactive, VGF-derived AQEE30 peptides, and quantified these peptides in various mouse tissues and brain regions. Immunoreactive AQEE30 was most abundant in the pituitary, while brain levels were highest in hypothalamus, striatum, and frontal cortex. Immunoreactive PEN levels were highest in the pancreas and spinal cord, and in brain, PEN was most abundant in striatum, hippocampus, pons and medulla, and cortex. Since both peptides were expressed in hypothalamus, a region of the brain that controls feeding and energy expenditure, double label immunofluorescence studies were employed. These demonstrated that 42% of hypothalamic arcuate neurons coexpress VGF and SAAS peptides, and that the intracellular distributions of these peptides in arcuate neurons differed. By RIA, cold stress increased immunoreactive AQEE30 and PEN peptide levels in female but not male hypothalamus, while a high fat diet increased AQEE30 and PEN peptide levels in female but not male hippocampus. VGF and SAAS-derived peptides are therefore widely expressed in endocrine, neuroendocrine, and neural tissues, can be accurately quantified by RIA, and are differentially regulated in the brain by diet and cold stress.


Subject(s)
Brain/metabolism , Energy Intake/physiology , Feeding Behavior/physiology , Nerve Tissue Proteins/metabolism , Neuropeptides/metabolism , Stress, Physiological/metabolism , Animals , Brain/anatomy & histology , Brain/physiopathology , Cold Temperature/adverse effects , Dietary Fats/adverse effects , Disease Models, Animal , Female , Food, Formulated/adverse effects , Hippocampus/anatomy & histology , Hippocampus/metabolism , Hippocampus/physiopathology , Hypothalamus/anatomy & histology , Hypothalamus/metabolism , Hypothalamus/physiopathology , Male , Mice , Mice, Inbred C57BL , Nerve Growth Factors , Nerve Tissue Proteins/chemistry , Neurons/metabolism , Neuropeptides/chemistry , Organ Specificity , Pancreas/metabolism , Pancreas/physiopathology , Peptides/analysis , Peptides/metabolism , Radioimmunoassay/adverse effects , Sex Characteristics , Stress, Physiological/etiology , Stress, Physiological/physiopathology , Up-Regulation/physiology
5.
J Biol Chem ; 280(50): 41595-608, 2005 Dec 16.
Article in English | MEDLINE | ID: mdl-16221685

ABSTRACT

Distinct intracellular pathways are involved in regulated and constitutive protein secretion from neuronal and endocrine cells, yet the peptide signals and molecular mechanisms responsible for targeting and retention of soluble proteins in secretory granules are incompletely understood. By using confocal microscopy and subcellular fractionation, we examined trafficking of the neuronal and endocrine peptide precursor VGF that is stored in large dense core vesicles and undergoes regulated secretion. VGF cofractionated with secretory vesicle membranes but was not detected in detergent-resistant lipid rafts. Deletional analysis using epitope-tagged VGF suggested that the C-terminal 73-amino acid fragment of VGF, containing two predicted alpha-helical loops and four potential prohormone convertase (PC) cleavage sites, was necessary and sufficient with an N-terminal signal peptide-containing domain, for large dense core vesicle sorting and regulated secretion from PC12 and INS-1 cells. Further transfection analysis identified the sorting sequence as a compact C-terminal alpha-helix and embedded 564RRR566 PC cleavage site; mutation of the 564RRR566 PC site in VGF-(1-65): GFP:VGF-(545-617) blocked regulated secretion, whereas disruption of the alpha-helix had no effect. Mutation of the adjacent 567HFHH570 motif, a charged region that might enhance PC cleavage in acidic environments, also blocked regulated release. Finally, inhibition of PC cleavage in PC12 cells using the membrane-permeable synthetic peptide chloromethyl ketone (decanoyl-RVKR-CMK) blocked regulated secretion of VGF. Our studies define a critical RRR-containing C-terminal domain that targets VGF into the regulated pathway in neuronal PC12 and endocrine INS-1 cells, providing additional support for the proposed role that PCs and their cleavage sites play in regulated peptide secretion.


Subject(s)
Gene Expression Regulation , Neurons/metabolism , Peptides/chemistry , Proprotein Convertases/chemistry , Proteins/chemistry , Amino Acid Motifs , Amino Acid Sequence , Animals , Binding Sites , Blotting, Western , Cell Line , Cell Membrane/metabolism , Centrifugation, Density Gradient , Chromogranins/chemistry , Detergents/pharmacology , Epitopes/chemistry , Gene Deletion , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/metabolism , Lipids/chemistry , Membrane Microdomains/chemistry , Microscopy, Confocal , Models, Genetic , Molecular Sequence Data , Mutation , Neuropeptides , PC12 Cells , Plasmids/metabolism , Protein Sorting Signals , Protein Structure, Secondary , Protein Structure, Tertiary , Rats , Recombinant Fusion Proteins/chemistry , Signal Transduction , Subcellular Fractions/metabolism , Time Factors , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...