Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
Int J Antimicrob Agents ; 63(4): 107100, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38280574

ABSTRACT

Over the last decade, there has been a growing appreciation for the use of in vitro and in vivo infection models to generate robust and informative nonclinical PK/PD data to accelerate the clinical translation of treatment regimens. The objective of this study was to develop a model-based "learn and confirm" approach to help with the design of combination regimens using in vitro infection models to optimise the clinical utility of existing antibiotics. Static concentration time-kill studies were used to evaluate the PD activity of polymyxin B (PMB) and meropenem against two carbapenem-resistant Klebsiella pneumoniae (CRKP) isolates; BAA2146 (PMB-susceptible) and BRKP67 (PMB-resistant). A mechanism-based model (MBM) was developed to quantify the joint activity of PMB and meropenem. In silico simulations were used to predict the time-course of bacterial killing using clinically-relevant PK exposure profiles. The predictive accuracy of the model was further evaluated by validating the model predictions using a one-compartment PK/PD in vitro dynamic infection model (IVDIM). The MBM captured the reduction in bacterial burden and regrowth well in both the BAA2146 and BRKP67 isolate (R2 = 0.900 and 0.940, respectively). The bacterial killing and regrowth predicted by the MBM were consistent with observations in the IVDIM: sustained activity against BAA2146 and complete regrowth of the BRKP67 isolate. Differences observed in PD activity suggest that additional dose optimisation might be beneficial in PMB-resistant isolates. The model-based approach presented here demonstrates the utility of the MBM as a translational tool from static to dynamic in vitro systems to effectively perform model-informed drug optimisation.


Subject(s)
Anti-Bacterial Agents , Polymyxin B , Meropenem/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Polymyxin B/pharmacology , Klebsiella pneumoniae , Microbial Sensitivity Tests
2.
Int. j. antimicrob. agents ; 59(4)Apr.2022. graf, tab
Article in English | CONASS, Sec. Est. Saúde SP, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1362633

ABSTRACT

Abstract Determining the role of the immune response in preventing antimicrobial resistance and optimizing antibiotic regimens against carbapenemase-producing Klebsiella pneumoniae (KPC) is a research gap that exists and needs to be further explored. The objective of this study was to determine the pharmacodynamics and immunomodulatory effects of fosfomycin alone and in combination with polymyxin B against KPC-2-producing K. pneumoniae clinical isolates. Six K. pneumoniae isolates were selected (polymyxin B_MIC: 0.5-64 mg/L; Fosfomycin MIC: 16-128 mg/L) to evaluate the pharmacodynamics of mono- and combination therapies in static time-kill studies. A mechanism based model was used to characterize the joint activity of polymyxin B and fosfomycin. A549 human airway epithelial cells were infected with four isolates to evaluate the immunomodulatory effects of treatment. Our mechanism-based model indicated greater bacterial killing efficacy of fosfomycin with polymyxin B compared to monotherapy. In combination, polymyxin B was assumed to exert an outer membrane effect which resulted in an increase in fosfomycin's ability to reach its target site. The mechanism based model described the data well across all six strains with R2 values ranging from 0.705 to 0.935. The combination reduced K. pneumoniae-induced IL-6 and IL-8 but not TNF-α expression. The reduction in cytokine expression was greater with polymyxin B than fosfomycin alone, and combinations showed significantly greater reductions compared to monotherapies. Our findings suggest that further research is needed to understand immune-mediated killing to identify a strategy which harnesses the power of the immune response against these hard to treat bacteria in an in vivo system.


Subject(s)
Fosfomycin , Klebsiella pneumoniae , Polymyxin B
3.
Int J Antimicrob Agents ; 59(4): 106566, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35288260

ABSTRACT

Determining the role of the immune response in preventing antimicrobial resistance and optimising antibiotic regimens against carbapenemase-producing Klebsiella pneumoniae is a research gap that exists and needs to be further explored. The objective of this study was to determine the pharmacodynamic and immunomodulatory effects of fosfomycin alone and in combination with polymyxin B against KPC-2-producing K. pneumoniae clinical isolates. Six K. pneumoniae isolates were selected (polymyxin B MIC, 0.5-64 mg/L; fosfomycin MIC, 16-128 mg/L) to evaluate the pharmacodynamics of monotherapy and combination therapies in static time-kill studies. A mechanism-based model was used to characterise the joint activity of polymyxin B and fosfomycin. A549 human airway epithelial cells were infected with four isolates to evaluate the immunomodulatory effects of treatment. Our mechanism-based model indicated greater bacterial killing efficacy of fosfomycin with polymyxin B compared with monotherapy. In combination, polymyxin B was assumed to exert an outer membrane effect that resulted in an increase in the ability of fosfomycin to reach its target site. The mechanism-based model described the data well across all six strains, with R2 values ranging from 0.705-0.935. Combination therapy reduced K. pneumoniae-induced IL-6 and IL-8 but not TNFα expression. The reduction in cytokine expression was greater with polymyxin B than fosfomycin alone; combination therapy showed significantly greater reduction compared to either monotherapy. Our findings suggest that further research is needed to better understand immune-mediated killing in order to identify a strategy which harnesses the power of the immune response against these hard-to-treat bacteria.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Fosfomycin , Klebsiella Infections , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/metabolism , Carbapenem-Resistant Enterobacteriaceae/metabolism , Fosfomycin/pharmacology , Fosfomycin/therapeutic use , Humans , Immunity , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Klebsiella pneumoniae , Microbial Sensitivity Tests , Polymyxin B/pharmacology , Polymyxin B/therapeutic use , beta-Lactamases/metabolism
4.
Clin. pharmacol. ther ; 109(4): 160-212, Apr. 2021. graf, tab
Article in English | Sec. Est. Saúde SP, CONASS, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1177204

ABSTRACT

Mounting antimicrobial resistance to carbapenemase-producing Klebsiella pneumoniae (CPKP) highlights the need to optimize currently available treatment options. The objective of this study was to explore alternative dosing strategies that limit the emergence of resistance to preserve the utility of last-line antibiotics by: (i) evaluating the pharmacodynamic (PD) killing activity of simulated humanized exposures to monotherapy and two-drug and three-drug combinations against CPKP bacterial isolates with different resistance mechanisms; and (ii) optimizing polymyxin B (PMB) exposure simulated in the three-drug combination regimens to maximize the killing activity. Two CPKP clinical isolates (BAA2146 (NDM-1) and BRKP76 (KPC-2)) were evaluated over 168 hours using a hollow-fiber infection model simulating clinically relevant PMB, fosfomycin, and meropenem dosing regimens. PMB-based three-drug combinations were further optimized by varying the initial exposure (0­24 hours) or maintenance dose received over the duration of treatment. The area under the bacterial load-versus-time curve (AUCFU) was used to determine PD activity. Overall reductions in PMB exposure ranged from 2 to 84%. BAA2146 and BRKP76 had median (range) AUCFUs of 11.0 (10.6­11.6) log10 CFU hour/mL and 7.08 (7.04­11.9) log10 CFU hour/mL, respectively. The PMB "front loaded" 2.5 mg/ kg/day + 0.5 mg/kg maintenance dose in combination with meropenem and fosfomycin was a promising regimen against BRKP76, with an overall reduction in PMB exposure of 56% while still eradicating the bacteria. Tailored triple combination therapy allows for the optimization of dose and treatment duration of last-line agents like PMB to achieve adequate drug exposure and appropriate PD activity while minimizing the emergence of resistance.


Subject(s)
Drug Combinations , Klebsiella pneumoniae , Therapeutics
5.
Int J Antimicrob Agents ; 57(6): 106328, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33785362

ABSTRACT

The global rise in nosocomial pneumonia caused by multidrug-resistant (MDR) Gram-negative pathogens and the increasingly limited antibiotic treatment options are growing threats to modern medicine. As a result, older antibiotics such as polymyxins are being used as last-resort drugs for MDR nosocomial pneumonia. Polymyxins are bactericidal against most aerobic Gram-negative bacilli. High-dose intravenous (IV) adminsitration of polymyxins, however, results in subtherapeutic concentrations at the site of infection making treatment challenging. Alternative forms of polymyxin delivery have been considered in order to better achieve the necessary concentrations at the site of infection. Several studies have evaluated the effectiveness of aerosolised polymyxins in patients with nosocomial pneumonia caused by MDR Gram-negative pathogens such as Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae. Here we evaluated the pharmacokinetic data supporting the use of inhaled polymyxins in nosocomial pneumonia and provide insight into the limitations and challenges that future studies should address. We have also reviewed the literature published between 2006 and 2020 on the use of aerosolised polymyxins for the treatment of nosocomial pneumonia, including ventilator-associated pneumonia, in patients without cystic fibrosis to evaluate their safety and efficacy as monotherapy or as an adjunct to IV antimicrobials. This review highlights the need for well-designed multicentre studies with standardised methodologies to further evaluate the effectiveness of inhaled polymyxins and to provide reliable pharmacokinetic/pharmacodynamic data in order to redefine appropriate dosing strategies.


Subject(s)
Gram-Negative Bacterial Infections/drug therapy , Polymyxins/pharmacology , Polymyxins/therapeutic use , Respiratory Tract Infections/drug therapy , Acinetobacter baumannii/drug effects , Administration, Inhalation , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Multiple, Bacterial , Humans , Klebsiella pneumoniae/drug effects , Pneumonia, Ventilator-Associated/drug therapy , Pseudomonas aeruginosa/drug effects , Treatment Outcome
6.
Clin Pharmacol Ther ; 110(5): 1196-1206, 2021 11.
Article in English | MEDLINE | ID: mdl-33624298

ABSTRACT

The emerging discipline of Quantitative Systems Pharmacology (QSP) enables the integration of quantitative experimental data describing the interactions between the various biological processes within the system using mathematical modeling to gain better insights into the factors that drive disease pathogenicity and influence antibiotic pharmacokinetics (PKs)/pharmacodynamics (PDs). Through our perspective we consider the evolution from PK/PD models to mechanism-based and systems-based models and then finally QSP. We further emphasize the need to invest in ambitious research that takes into consideration: (i) the antibiotic PK/PD activity, (ii) the time course of the host immune response to understand the progression of the infection, (iii) and a growing appreciation of the cellular and molecular networks using multi-omics analysis to understand the modulation of antimicrobial therapy at a true systems level.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/drug effects , Health Knowledge, Attitudes, Practice , Models, Biological , Systems Analysis , Animals , Drug Resistance, Bacterial/physiology , Humans
7.
Clin Pharmacol Ther ; 109(4): 1074-1080, 2021 04.
Article in English | MEDLINE | ID: mdl-33548079

ABSTRACT

Mounting antimicrobial resistance to carbapenemase-producing Klebsiella pneumoniae (CPKP) highlights the need to optimize currently available treatment options. The objective of this study was to explore alternative dosing strategies that limit the emergence of resistance to preserve the utility of last-line antibiotics by: (i) evaluating the pharmacodynamic (PD) killing activity of simulated humanized exposures to monotherapy and two-drug and three-drug combinations against CPKP bacterial isolates with different resistance mechanisms; and (ii) optimizing polymyxin B (PMB) exposure simulated in the three-drug combination regimens to maximize the killing activity. Two CPKP clinical isolates (BAA2146 (NDM-1) and BRKP76 (KPC-2)) were evaluated over 168 hours using a hollow-fiber infection model simulating clinically relevant PMB, fosfomycin, and meropenem dosing regimens. PMB-based three-drug combinations were further optimized by varying the initial exposure (0-24 hours) or maintenance dose received over the duration of treatment. The area under the bacterial load-versus-time curve (AUCFU) was used to determine PD activity. Overall reductions in PMB exposure ranged from 2 to 84%. BAA2146 and BRKP76 had median (range) AUCFUs of 11.0 (10.6-11.6) log10  CFU hour/mL and 7.08 (7.04-11.9) log10 CFU hour/mL, respectively. The PMB "front loaded" 2.5 mg/kg/day + 0.5 mg/kg maintenance dose in combination with meropenem and fosfomycin was a promising regimen against BRKP76, with an overall reduction in PMB exposure of 56% while still eradicating the bacteria. Tailored triple-combination therapy allows for the optimization of dose and treatment duration of last-line agents like PMB to achieve adequate drug exposure and appropriate PD activity while minimizing the emergence of resistance.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/biosynthesis , Fosfomycin/pharmacology , Klebsiella pneumoniae/drug effects , Meropenem/pharmacology , Polymyxin B/pharmacology , beta-Lactamases/biosynthesis , Anti-Bacterial Agents/administration & dosage , Bacteriological Techniques , Dose-Response Relationship, Drug , Drug Combinations , Drug Resistance, Multiple, Bacterial , Drug Synergism , Fosfomycin/administration & dosage , Humans , Meropenem/administration & dosage , Polymyxin B/administration & dosage
8.
Gen Comp Endocrinol ; 265: 196-201, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29550552

ABSTRACT

To shed light on the mechanisms of and interactions of GSD and TSD in pejerrey, we investigated how the transcriptional profiles of amhy and amha are affected by feminizing (17 °C) and masculinizing (29 °C) temperatures during the critical period of sex determination/differentiation and their relation with the expression profiles of AMH receptor type II (amhrII), gonadal aromatase (cyp19a1a), and 11 beta-hydroxysteroid dehydrogenase 2 (hsd11b2). Careful consideration of the results of this study and all information currently available for this species, including similar analyzes for an intermediate, mixed-sex promoting temperature (25 °C), suggests a model for genotypic/temperature-dependent sex determination and gonadal sex differentiation that involves a) cyp19a1a-dependent, developmentally-programmed ovarian development as the default state that becomes self-sustaining in the absence of a potent and timely masculinizing stimulus, b) early, developmentally-programmed amhy expression and high temperature as masculinization signals that antagonize the putative female pathway by suppressing cyp19a1a expression, c) increasing stress response, cortisol, and the synthesis of the masculinizing androgen 11-keto-testosterone via hsd11b2 with increasing temperature that is important for masculinization in both genotypes but particularly so in XX individuals, and d) an endocrine network with positive/negative feedback mechanisms that ensure fidelity of the male/female pathway once started. The proposed model, albeit tentative and non-all inclusive, accounts for the continuum of responses, from all-females at low temperatures to all-males at high temperatures and for the balanced-, genotype-linked sex ratios obtained at intermediate temperatures, and therefore supports the coexistence of TSD and GSD in pejerrey across the range of viable temperatures for this species.


Subject(s)
Fishes/genetics , Fishes/physiology , Gene Expression Regulation , Gonads/metabolism , Sex Determination Processes/genetics , Sex Differentiation/genetics , Temperature , Animals , Body Size , Female , Fish Proteins/genetics , Fish Proteins/metabolism , Fishes/anatomy & histology , Gene Expression Profiling , Genotype , Larva , Male , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sex Ratio
SELECTION OF CITATIONS
SEARCH DETAIL
...