Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Transl Res ; 7(3): 289-296, 2021 Jun 26.
Article in English | MEDLINE | ID: mdl-34179543

ABSTRACT

BACKGROUND AND AIMS: Physical exercise may help combat disease and elicits a possible "protective" anti-inflammatory effect on the body. Inflammatory cytokines, C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-α (TNFα), along with transcription factor, nuclear factor-kappa B (NFκB) in young (n=16, 21.1±2.1 years) individuals were examined in a cross-sectional descriptive study, to assess the effects of chronic stimulation on their expression and relationship with health parameters. METHODS: Fasting venous whole blood and lipid levels along with body composition measurements were obtained from young, healthy, endurance-trained NCAA Division III student-athletes and untrained individuals. Assays (ELISA) were conducted to analyze fasting plasma (CRP, IL-6, and TNFα) and isolated lymphocyte NF-κB activation (lymphocytes were isolated from whole blood samples through differential centrifugation and Ficoll-Paque). A Spearman's rank order correlation coefficient was used for associations between variables and a regression analysis was performed to determine which measurement accounted for the inflammation in this young and apparently healthy population. RESULTS: While the inflammatory markers were not associated with each other, CRP levels were associated with body composition and following regression analyses, body fat percentage (P>0.05) was a significant factor for elevated CRP. CONCLUSIONS: Chronic physical exercise eliciting lower body fat percentages in young adults may have a positive protective impact through anti-inflammatory status, minimizing disease risk in a young population. RELEVANCE FOR PATIENTS: Chronic physically active young adult patients may exhibit less inflammation and lower body fat levels which may decrease their risk for chronic disease.

2.
Int J Pharm ; 577: 118995, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31935471

ABSTRACT

Drug repurposing is on the rise as an atypical strategy for discovery of new molecules, involving use of pre-existing molecules for a different therapeutic application than the approved indication. Using this strategy, the current study aims to leverage effects of quinacrine (QA), a well-known anti-malarial drug, for treatment of non-small cell lung cancer (NSCLC). For respiratory diseases, designing a QA loaded inhalable delivery system has multiple advantages over invasive delivery. QA-loaded nanoparticles (NPs) were thus prepared using polyethyleneimine (PEI) as a cationic stabilizer. While the use of PEI provided cationic charge on the particles, it also mediated a burst release of QA and demonstrated potential particle toxicity. These concerns were circumvented by coating nanoparticles with bovine serum albumin (BSA), which retained the cationic charge, reduced NP toxicity and modulated QA release. Prepared nanoparticles were characterized for physicochemical properties along with their aerosolization potential. Therapeutic efficacy of the formulations was tested in different NSCLC cells. Mechanism of higher anti-proliferation was evaluated by studying cell cycle profile, apoptosis and molecular markers involved in the progression of lung cancer. BSA coated QA nanoparticles demonstrated good aerosolization potential with a mass median aerodynamic diameter of significantly less than 5 µm. Nanoparticles also demonstrated improved therapeutic efficacy against NSCLC cells in terms of low IC50 values, cell cycle arrest at G2/M phase and autophagy inhibition leading to increased apoptosis. BSA coated QA NPs also demonstrated enhanced therapeutic efficacy in a 3D cell culture model. The present study thus lays solid groundwork for pre-clinical and eventual clinical studies as a standalone therapy and in combination with existing chemotherapeutics.


Subject(s)
Drug Compounding/methods , Drug Delivery Systems/methods , Drug Repositioning/methods , Nanoparticles/chemistry , Quinacrine/chemistry , Serum Albumin, Bovine/chemistry , Administration, Inhalation , Aerosols/chemistry , Aerosols/pharmacology , Animals , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Cycle/drug effects , Cell Line, Tumor , Dose-Response Relationship, Drug , Drug Liberation , Humans , Lung Neoplasms/drug therapy , Nanoparticles/administration & dosage , Particle Size , Polyethyleneimine/chemistry , Quinacrine/administration & dosage , Quinacrine/pharmacology
3.
Int J Biol Macromol ; 122: 338-347, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30401652

ABSTRACT

This study was aimed at developing a nanoparticle strategy to overcome acquired resistance against erlotinib in non-small cell lung cancer (NSCLC). To load erlotinib on biodegradable PLGA nanoparticles, erlotinib-cyclodextrin (Erlo-CD) complex was prepared using ß-cyclodextrin sulfobutyl ether, which was in turn loaded in the core of PLGA nanoparticles using multiple emulsion solvent evaporation. Nanoparticles were characterized for size distribution, entrapment and loading efficiency, in-vitro release, and therapeutic efficacy against different lung cancer cells. Effect of formulation on cell cycle, apoptosis, and other markers was evaluated using flow cytometry and western blotting studies. The efficacy of optimized nanoformulation was evaluated using a clinically relevant in-vitro 3D-spheroid model. Results showed that Erlo-CD loaded nanoparticles (210 ±â€¯8 nm in size) demonstrated 3-fold higher entrapment (61.5 ±â€¯3.2% vs 21.9 ±â€¯3.7% of plain erlotinib loaded nanoparticles) with ~5% loading efficiency and sustained release characteristics. Developed nanoparticles demonstrated significantly improved therapeutic efficacy against NSCLC cells in terms of low IC50 values and suppressed colony forming ability of cancer cells, increased apoptosis, and autophagy inhibition. Interestingly, 3D spheroid study demonstrated better anticancer activity of Erlo-CD nanoparticles compared to plain erlotinib. Present study has shown a premise to improve therapeutic efficacy against erlotinib-resistant lung cancer using modified nanoErlo formulations.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Cyclodextrins/chemistry , Drug Carriers/chemistry , Erlotinib Hydrochloride/pharmacology , Lung Neoplasms/pathology , Nanoparticles/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Apoptosis/drug effects , Autophagy/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Liberation , Erlotinib Hydrochloride/chemistry , Erlotinib Hydrochloride/therapeutic use , Humans , Lung Neoplasms/drug therapy , Particle Size
4.
Biol Open ; 5(8): 1093-101, 2016 Aug 15.
Article in English | MEDLINE | ID: mdl-27402966

ABSTRACT

A fundamental question in biology is how an organism's morphology and physiology are shaped by its environment. Here, we evaluate the effects of a hypersaline environment on the morphology and physiology of a population of livebearing fish in the genus Limia (Poeciliidae). We sampled from two populations of Limia perugiae (one freshwater and one hypersaline) in the southwest Dominican Republic. We evaluated relative abundance of osmoregulatory proteins using western blot analyses and used a geometric morphometric approach to evaluate fine-scale changes to size and shape. Our data show that gill tissue isolated from hypersaline fish contained approximately two and a half times higher expression of Na(+)/K(+) ATPase proteins. We also show evidence for mitochondrial changes within the gills, with eight times more complex I and four times higher expression of ATP synthase within the gill tissue from the hypersaline population. The energetic consequences to Limia living in saline and hypersaline environments may be a driver for phenotypic diversity, reducing the overall body size and changing the relative size and shape of the head, as well as impeding the growth of secondary sex features among the males.

5.
Biochem J ; 428(1): 85-93, 2010 Apr 28.
Article in English | MEDLINE | ID: mdl-20210787

ABSTRACT

Excessive generation of nitric oxide radical (NO*) in neuroinflammation, excitotoxicity and during age-related neurodegenerative disorders entails the localized and concerted increase in nitric oxide synthase(s) expression in glial cells and neurons. The aim of the present study was to assess the biological significance of the impact of NO* on the cell's thiol status with emphasis on S-glutathionylation of targeted proteins. Exposure of primary cortical neurons or astrocytes to increasing flow rates of NO* (0.061-0.25 microM/s) resulted in the following. (i) A decrease in GSH (glutathione) in neurons accompanied by formation of GSNO (S-nitrosoglutathione) and GSSG (glutathione disulfide); neurons were far more sensitive to NO* exposure than astrocytes. (ii) A dose-dependent oxidation of the cellular redox status: the neuron's redox potential increased approximately 42 mV and that of astrocytes approximately 23 mV. A good correlation was observed between cell viability and the cellular redox potential. The higher susceptibility of neurons to NO* can be partly explained by a reduced capacity to recover GSH through lower activities of GSNO and GSSG reductases. (iii) S-glutathionylation of a small subset of proteins, among them GAPDH (glyceraldehyde-3-phosphate dehydrogenase), the S-glutathionylation of which resulted in inhibition of enzyme activity. The quantitative analyses of changes in the cell's thiol potential upon NO* exposure and their consequences for S-glutathionylation are discussed in terms of the distinct redox environment of astrocytes and neurons.


Subject(s)
Glutathione/metabolism , Neurons/metabolism , Nitric Oxide/metabolism , Animals , Female , Glutathione Disulfide/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Rats , Rats, Inbred F344 , S-Nitrosoglutathione/metabolism
6.
Adv Drug Deliv Rev ; 61(14): 1283-98, 2009 Nov 30.
Article in English | MEDLINE | ID: mdl-19716388

ABSTRACT

Decrease in mitochondrial energy-transducing capacity is a feature of the aging process that accompanies redox alterations, such as increased generation of mitochondrial oxidants, altered GSH status, and increased protein oxidation. The decrease in mitochondrial energy-transducing capacity and altered redox status should be viewed as a concerted process that embodies the mitochondrial energy-redox axis and is linked through various mechanisms including: (a) an inter-convertible reducing equivalents pool (i.e., NAD(P)(+)/NAD(P)H) and (b) redox-mediated protein post-translational modifications involved in energy metabolism. The energy-redox axis provides the rationale for therapeutic approaches targeted to each or both component(s) of the axis that effectively preserves or improve mitochondrial function and that have implications for aging and age-related neurodegenerative disorders.


Subject(s)
Aging/metabolism , Energy Metabolism/physiology , Mitochondria/metabolism , Neurodegenerative Diseases/metabolism , Oxidation-Reduction/drug effects , Drug Delivery Systems/methods , Energy Metabolism/drug effects , Humans , Models, Biological , Neurons/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...