Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Adv Pharm Bull ; 11(3): 469-476, 2021 May.
Article in English | MEDLINE | ID: mdl-34513621

ABSTRACT

Purpose: The development biosensing technologies capable of delivering fast and reliable analysis is a growing trend in drug quality control. Considering the emerging use of plant-based polyphenol oxidases (PPO) as biological component of electrochemical biosensors, this work reports the first Solanum lycocarpum PPO biosensor and its use in the pharmaceutical analysis of paracetamol in tablet formulations. Methods: The biosensor was optimized regarding fruit maturation (immature and mature-ripe), vegetal extract volume to be used in biosensor construction as well as optimal pH of electrochemical cell fluid. Results: Results evidenced that the extract which rendered the biosensor with best analytical performance was from immature fruits, and the biosensor produced using 100 µL of crude plant extract promoted better faradaic signal gathering. Moreover, when neutral pH media was used in the electrochemical cell, the biosensor showcased best faradaic signal output from the used redox probe (catechol), suggesting thence that the method presents high sensibility for phenolic compounds detection. Furthermore, the biosensor was able to quantify paracetamol in a linear range from 50 to 300 µM, showcasing LoD and LoQ of 3 µM and 10 µM, respectively. Conclusion: after careful evaluation, this biosensor might be a low-cost alternative for conventional pharmaceutical quality control methods.

2.
Pharmaceuticals (Basel) ; 13(4)2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32316568

ABSTRACT

Carvedilol (CRV) is a non-selective blocker of α and ß adrenergic receptors, which has been extensively used for the treatment of hypertension and congestive heart failure. Owing to its poor biopharmaceutical properties, CRV has been incorporated into different types of drug delivery systems and this necessitates the importance of investigating their compatibility and stability. In this sense, we have investigated the applicability of several electroanalytical tools to assess CRV compatibility with lipid excipients. Voltammetric and electrochemical impedance spectroscopy techniques were used to evaluate the redox behavior of CRV and lipid excipients. Results showed that Plurol® isostearic, liquid excipient, and stearic acid presented the greatest anode peak potential variation, and these were considered suitable excipients for CRV formulation. CRV showed the highest stability at room temperature and at 50 °C when mixed with stearic acid (7% w/w). The results also provided evidence that electrochemical methods might be feasible to complement standard stability/compatibility studies related to redox reactions.

3.
Adv Pharm Bull ; 9(3): 416-422, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31592074

ABSTRACT

Purpose: Jenipapo fruit (Genipa americana L) is a natural source of polyphenol oxidases (PPOs) whose potential in pharmaceutical analysis is noteworthy. Henceforth, this work reports the electrochemical study of a low-cost PPO-based biosensor produced from the crude extract of Jenipapo fruits and accounts a practical approach to employ this biosensor in the determination of methyldopa and paracetamol in pharmaceutical samples. Methods: In order to investigate the electrochemical properties of the biosensor, theoretical and practical approaches were employed, and both samples and the biosensor were analyzed through electrochemical impedance spectroscopy (EIS) and voltammetric techniques, namely: differential pulse voltammetry (DPV) and cyclic voltammetry (CV). Results: showcased that the biosensor presented good analytical features, as well as low detection limits (8 µmol L-1 for methyldopa and 5 µmol L-1 for paracetamol). The relative standard deviation was less than 5% mid-assay. Conclusion: The use of this biosensor is a reliable, low cost and useful alternative in the pharmaceutic determination of phenolic drugs (e.g. methyldopa and paracetamol).

4.
Pharmaceuticals (Basel) ; 12(2)2019 Jun 04.
Article in English | MEDLINE | ID: mdl-31167398

ABSTRACT

Diclofenac (DIC) is a non-steroidal anti-inflammatory drug of wide use around the world. Electroanalytical methods display a high analytical potential for application in pharmaceutical samples but the drawbacks concerning electrode fouling and reproducibility are of major concern. Henceforth, the aim of this work was to propose the use of alternative low-cost carbon black (CB) and ionic liquid (IL) matrix to modify the surface of pencil graphite electrodes (PGE) in order to quantify DIC in raw materials, intermediates, and final products, as well as in stability assays of tablets. The proposed method using CB+IL/PGE displayed good recovery (99.4%) as well as limits of detection (LOD) of 0.08 µmol L-1 and limits of quantification (LOQ) of 0.28 µmol L-1. CB+IL/PGE response was five times greater than the unmodified PGE. CB+IL-PGE stands as an interesting alternative for DIC assessment in different pharmaceutical samples.

5.
Ecotoxicol Environ Saf ; 179: 143-150, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31035248

ABSTRACT

Doxorubicin (DOX) is an anthracycline widely used in treatments of several cancers, so it has found in hospital effluents with a significant concentration (above 1 µg L-1). Electrochemical remediation is an alternative to promote its degradation. The aim of this work was to evaluate the ability of nanostructured graphite electrodes with metallic oxides to degrade DOX by electro-oxidation (EO). Graphite, TiO2@graphite and AuO-TiO2@graphite electrodes were used in medium with tap water or 10 mmol L-1 NaCl. DOX treatments at concentrations of 1.25-5 mg L-1 were carried out in a voltage source with 1.5-5 V. The cathode used was the platinum electrode. The treatment of DOX 1.25 mg L-1 with 10 mmol L-1 NaCl electrolyte using the AuO-TiO2@graphite electrode at 5 V and 1 mA was the best methodology to promote its degradation. Also, the modified electrode was efficient to DOX degradation after 17 cycles of reuse. An energy expenditure of 1.11 and 0.2 kWh m-3 were obtained for 3 and 50 mL of treatment, respectively. Fish embryo acute toxicity test with zebrafish (Danio rerio) were performed before and after treatment by EO using NaCl. This treatment caused no effect on embryo-larval development, however it induced significant damage in the DNA of the zebrafish larvae after 96 h of exposure, which emphasizes the importance of a depth ecotoxicological evaluation during the development of EO methodologies.


Subject(s)
Doxorubicin/analysis , Electrochemical Techniques/methods , Water Pollutants, Chemical/analysis , Water Purification/methods , Animals , Doxorubicin/toxicity , Ecotoxicology , Electrodes , Electrolytes , Embryo, Nonmammalian/drug effects , Graphite/chemistry , Oxidation-Reduction , Titanium/chemistry , Toxicity Tests, Acute , Wastewater/chemistry , Water Pollutants, Chemical/toxicity , Zebrafish
6.
Prep Biochem Biotechnol ; 49(4): 375-383, 2019.
Article in English | MEDLINE | ID: mdl-30777480

ABSTRACT

Laccase extract (LE) from Pycnoporus sanguineus was immobilized on calcium and copper alginate-chitosan beads and applied for the removal of 17α-ethinylestradiol (EE2). Effects of immobilization conditions such as: sodium alginate (SA) concentration; LE/SA ratio and chitosan/ion (Ca+2 or Cu+2) ratio on the immobilization yield were investigated. Immobilized LE on Ca-beads and Cu-beads was then used to degrade an EE2 solution. The optimal conditions for LE immobilization on Ca-beads were: 1.5% (w/v) SA, 1:5 (v/v) LE/SA and 3:7 (v/v) chitosan/ion (Ca+2). The optimal conditions for immobilization on Cu-beads were 2.0% (w/v) SA, 0.5:5 (v/v) LE/SA and 3:7 (v/v) chitosan/ion (Cu+2). The best result was obtained for immobilized LE on Ca-beads in buffer-absent medium. Furthermore, the immobilized enzyme was reused in five cycles for EE2 removal. The formation of EE2 dimers by LE treatment has been demonstrated by electrospray ionization coupled to time of flight mass spectrometer (ESI-TOF-MS). The results evidenced that immobilized LE in alginate-chitosan-divalent cation bead is an effective alternative for EE2 removal.


Subject(s)
Alginates/chemistry , Chitosan/chemistry , Environmental Restoration and Remediation/methods , Ethinyl Estradiol/isolation & purification , Laccase/chemistry , Waste Management/methods , Enzymes, Immobilized/chemistry , Ethinyl Estradiol/chemistry , Porosity , Pycnoporus/enzymology , Stereoisomerism
7.
Oxid Med Cell Longev ; 2018: 9842908, 2018.
Article in English | MEDLINE | ID: mdl-30420910

ABSTRACT

Pequi (Caryocar brasiliense) is an endemic species from Brazilian Cerrado, and their fruits are widely used in regional cuisine. In this work, a crude hydroalcoholic extract (CHE) of C. brasiliense leaves and its resulting fractions in hexane (HF), chloroform (CF), ethyl acetate (EAF), and butanol (BF) were investigated for their antioxidant properties and anticholinesterase activities. The antioxidant properties were evaluated by free radical scavenging and electroanalytical assays, which were further correlated with the total phenolic content and LC-MS results. The acetylcholinesterase and butyrylcholinesterase inhibitory activities were examined using Ellman's colorimetric method. The LC-MS analysis of EAF revealed the presence of gallic acid and quercetin. CHE and its fractions, EAF and BF, showed anticholinesterase and antioxidant activities, suggesting the association of both effects with the phenolic content. In addition, behavioral tests performed with CHE (10, 100, and 300 mg/kg) showed that it prevented mice memory impairment which resulted from aluminium intake. Moreover, CHE inhibited brain lipid peroxidation and acetyl and butyryl-cholinesterase activities and the extract's neuroprotective effect was reflected at the microscopic level. Therefore, the leaves of pequi are a potential source of phenolic antioxidants and can be potentially used in treatments of memory dysfunctions, such as those associated with neurodegenerative disorders.


Subject(s)
Antioxidants/pharmacology , Cholinesterase Inhibitors/pharmacology , Ericales/chemistry , Neuroprotective Agents/pharmacology , Plant Leaves/chemistry , Acetylcholinesterase/metabolism , Animals , Behavior, Animal , Butyrylcholinesterase/metabolism , Cerebral Cortex/pathology , Electrochemistry , Ethanol/chemistry , Gallic Acid/analysis , Inhibitory Concentration 50 , Male , Malondialdehyde/metabolism , Mice , Phenols/analysis , Plant Extracts/pharmacology , Quercetin/analysis , Reference Standards , Thiobarbituric Acid Reactive Substances/metabolism , Water/chemistry
8.
Pharmaceuticals (Basel) ; 11(4)2018 Oct 05.
Article in English | MEDLINE | ID: mdl-30301183

ABSTRACT

Methyldopa is a catecholamine widely used in the treatment of mild to moderate hypertension whose determination in pharmaceutical formulae is of upmost importance for dose precision. Henceforth, a low-cost carbon paste electrode (CPE) consisting of graphite powder obtained from a crushed pencil stick was herein modified with nanostructured TiO2 (TiO2@CPE) aiming for the detection of methyldopa in pharmaceutical samples. The TiO2-modified graphite powder was characterized by scanning electron microscopy and X-ray diffraction, which demonstrated the oxide nanostructured morphology. Results evidenced that sensitivity was nonetheless increased due to electro-catalytic effects promoted by metal modification, and linear response obtained by differential pulse voltammetry for the determination of methyldopa (pH = 5.0) was between 10⁻180 µmol/L (Limit of Detection = 1 µmol/L) with the TiO2@CPE sensor. Furthermore, the constructed sensor was successfully applied in the detection of methyldopa in pharmaceutical formulations and excipients promoted no interference, that indicates that the sensor herein developed is a cheap, reliable, and useful strategy to detect methyldopa in pharmaceutical samples, and may also be applicable in determinations of similar compounds.

9.
Chem Biol Interact ; 291: 162-170, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29920285

ABSTRACT

Amoxicillin (AMX) is one of the most commonly prescribed antibiotics around the world to treat and prevent several diseases in both human and veterinary medicine. Incomplete removal of AMX during wastewater treatment contributes to its presence in water bodies and drinking water. AMX is an emerging contaminant since its impact on the environment and human health remains uncertain. This contribution was aimed to evaluate the electrochemical oxidation (EO) of AMX using different anodes in tap water, NaCl or Na2SO4 solutions and to evaluate the potential toxicity of remaining AMX and its by-products on zebrafish early-life stages. Chemical intermediates generated after EO were determined by mass spectrometry and their resulting antimicrobial activity was evaluated. AMX did not induce significant mortality in zebrafish during extended exposure but affected zebrafish development (increased body length) from 6.25 mg/L to 25 mg/L and inhibited enzymatic biomarkers. Carbon modified with titanium oxide (TiO2@C) anode achieved complete AMX removal in just a few minutes and efficiency of the supported electrolytes occurred in the following order: 0.1 M NaCl > 0.1 M Na2SO4 > 0.01 M NaCl > tap water. The order of potential toxicity to zebrafish early life-stages related to lethal and sublethal effects was as follows: 0.1 M Na2SO4 > 0.1 M NaCl >0.01 M NaCl = tap water. Additionally, the EO of AMX using TiO2@C electrode with 0.01 M NaCl was able to inhibit the antimicrobial activity of AMX, reducing the possibility of developing bacterial resistance.


Subject(s)
Amoxicillin/pharmacokinetics , Anti-Infective Agents/pharmacokinetics , Electrochemistry , Amoxicillin/toxicity , Animals , Catalase/metabolism , Embryo, Nonmammalian/drug effects , Female , Glutathione Transferase/metabolism , Hydrogen-Ion Concentration , Inactivation, Metabolic , L-Lactate Dehydrogenase/metabolism , Male , Mass Spectrometry , Microbial Sensitivity Tests , Oxidation-Reduction , Solutions , Survival Analysis , Temperature , Toxicity Tests, Acute , Zebrafish/embryology
10.
Rev. bras. farmacogn ; 28(3): 325-332, May-June 2018. tab, graf
Article in English | LILACS | ID: biblio-958874

ABSTRACT

ABSTRACT The prevention of chronic and degenerative diseases, is a health concern deeply associated with oxidative stress. Such progressive phenomena can be avoided through exogenous antioxidant intake, which set up a reductant cascade, mopping up damaging free radicals. Medicinal herbs are commonly associated with high antioxidant potential, and hence their health benefits. The commerce of dried herbal extracts movements a big portion of developing countries economy. The determination of medicinal herbs the antioxidant activity capacity is of utmost importance. The assessment of antioxidant activity in phytotherapics is mostly achieved by spectrophotometric assays, however colored substances can produce interferences that do not occur in electroanalytical methods. Therefore, the aim of this paper is to compare spectrophotometric and voltammetric techniques to evaluate antioxidant activity in herbal drugs such as: Ginkgo biloba L., Camellia sinensis (L.) Kuntze, Theaceae; Hypericum perforatum L., Hypericaceae; Aesculus hippocastanum L., Sapindaceae; Rosmarinus officinalis L., Lamiaceae; Morinda citrifolia L., Rubiaceae; Centella asiatica (L.) Urb., Apiaceae; Trifolium pratense L., Fabaceae; Crataegus oxyacantha L., Rosaceae; and Vaccinium macrocarpon Aiton, Ericaceae. The spectrophotometric methods employed were DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) and the Folin-Ciocalteu assays. The electroanalytical method used was voltammetry and it was developed a phenoloxidase based biosensor. The redox behavior observed for each herbal sample resulted in distinguishable voltammetric profiles. The highest electrochemical indexes were found to G. biloba and H. perforatum, corroborating to traditional spectrophotometric methods. Thus, the electroanalysis of herbal drugs, may be a promising tool for antioxidant potential assessment.

11.
Biosensors (Basel) ; 8(2)2018 May 15.
Article in English | MEDLINE | ID: mdl-29762479

ABSTRACT

In this work, an innovative polyphenol oxidase biosensor was developed from Jenipapo (Genipa americana L.) fruit and used to assess phenolic compounds in industrial effluent samples obtained from a textile industry located in Jaraguá-GO, Brasil. The biosensor was prepared and optimized according to: the proportion of crude vegetal extract, pH and overall voltammetric parameters for differential pulse voltammetry. The calibration curve presented a linear interval from 10 to 310 µM (r² = 0.9982) and a limit of detection of 7 µM. Biosensor stability was evaluated throughout 15 days, and it exhibited 88.22% of the initial response. The amount of catechol standard recovered post analysis varied between 87.50% and 96.00%. Moreover, the biosensor was able to detect phenolic compounds in a real sample, and the results were in accordance with standard spectrophotometric assays. Therefore, the innovatively-designed biosensor hereby proposed is a promising tool for phenolic compound detection and quantification when environmental contaminants are concerned.


Subject(s)
Catechol Oxidase/chemistry , Fruit/chemistry , Phenols/chemistry , Plant Extracts/chemistry , Rubiaceae/chemistry , Textiles/statistics & numerical data
12.
Biosensors (Basel) ; 8(2)2018 Apr 02.
Article in English | MEDLINE | ID: mdl-29614829

ABSTRACT

The vegetable kingdom is a wide source of a diverse variety of enzymes with broad biotechnological applications. Among the main classes of plant enzymes, the polyphenol oxidases, which convert phenolic compounds to the related quinones, have been successfully used for biosensor development. The oxidation products from such enzymes can be electrochemically reduced, and the sensing is easily achieved by amperometric transducers. In this work, the polyphenoloxidases were extracted from jurubeba (Solanum paniculatum L.) fruits, and the extract was used to construct a carbon paste-based biosensor for pharmaceutical analysis and applications. The assay optimization was performed using a 0.1 mM catechol probe, taking into account the amount of enzymatic extract (50 or 200 µL) and the optimum pH (3.0 to 9.0) as well as some electrochemical differential pulse voltammetric (DPV) parameters (e.g., pulse amplitude, pulse range, pulse width, scan rate). Under optimized conditions, the biosensor was evaluated for the quantitative determination of acetaminophen, acetylsalicylic acid, methyldopa, and ascorbic acid. The best performance was obtained for acetaminophen, which responded linearly in the range between 5 and 245 µM (R = 0.9994), presenting a limit of detection of 3 µM and suitable repeatability ranging between 1.52% and 1.74% relative standard deviation (RSD).


Subject(s)
Acetaminophen/chemistry , Biosensing Techniques/methods , Catechol Oxidase/metabolism , Fruit/chemistry , Solanum/chemistry
13.
Food Chem ; 237: 1118-1123, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-28763958

ABSTRACT

Honey is a functional food widely consumed. Thus, the evaluation of honey samples to determine its phenolic content and antioxidant capacity (AOC) is relevant to determine its quality. Usually AOC is performed by spectrophotometric methods, which lacks reproducibility and practicality. In this context, the electroanalytical methods offer higher simplicity and accuracy. Hence, the aim of this work was to use of electroanalytical tools and laccase based biosensor on the evaluation of AOC and total phenol content (TPC) of honey samples from different countries. The antioxidant power established by electrochemical index presented good correlation with the spectrophotometric FRAP (Ferric Reducing Ability of Plasma) and DPPH (2,2-Diphenyl-1-Picrylhydrazyl) radical scavenging assays. Also, TPC results obtained by the biosensor agreed with the Folin-Ciocalteu (FC) assay. In addition to the semi quantitative results, the electroanalysis offered qualitative parameters, which were useful to indicate the nature of major phenolic compounds.


Subject(s)
Biosensing Techniques , Honey/analysis , Antioxidants , Laccase , Phenols , Reproducibility of Results
14.
Chemosphere ; 186: 519-526, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28810222

ABSTRACT

The bioremediation and electro-oxidation (EO) processes are included among the most promising cleaning and decontamination mechanisms of water. The efficiency of bioremediation is dictated by the biological actuator for a specific substrate, its suitable immobilization and all involved biochemical concepts. The EO performance is defined by the anode efficiency to perform the complete mineralization of target compounds and is highlighted by the low or null use of reagent. Recently, the combination of both technologies has been proposed. Thus, the development of high efficient, low cost and eco-friendly anodes for sustainable EO, as well as, supporting devices for immobilization of biological systems applied in bioremediation is an open field of research. Therefore, the aim of this work was to promote the bio-electrochemical remediation of indigo carmine dye (widely common in textile industry), using new anode based on a microporous activated carbon fiber felt (ACFF) and ACFF with immobilized Laccase (Lcc) from Pycnoporus sanguineus. The results were discolorations of 62.7% with ACFF anode and 83.60% with ACFF-MANAE-Lcc anode, both for 60 min in tap water. This remediation rates show that this new anode has low cost and efficiency in the degradation of indigo dye and can be applied for other organic pollutant.


Subject(s)
Carbon/chemistry , Indigo Carmine/analysis , Laccase/metabolism , Water Pollutants, Chemical/analysis , Water Purification/methods , Biodegradation, Environmental , Bioreactors , Carbon Fiber , Electrochemical Techniques/methods , Electrodes , Enzymes, Immobilized/metabolism , Indigo Carmine/chemistry , Oxidation-Reduction , Porosity , Textile Industry , Trametes/enzymology , Water Pollutants, Chemical/chemistry
15.
Sci Rep ; 7: 41326, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28145477

ABSTRACT

Microcystin-leucine arginine (MC-LR) is the most abundant and toxic secondary metabolite produced by freshwater cyanobacteria. This toxin has a high potential hazard health due to potential interactions with liver, kidney and the nervous system. The aim of this work was the design of a simple and environmentally friendly electrochemical system based on highly efficient nanostructured electrodes for the removal of MC-LR in tap water. Titania nanoparticles were deposited on carbon (graphite) under a simple and efficient microwave assisted approach for the design of the electrode, further utilized in the electrochemical remediation assays. Parameters including the applied voltage, time of removal and pH (natural tap water or alkaline condition) were investigated in the process, with results pointing to a high removal efficiency for MC-LR (60% in tap water and 90% in alkaline media experiments, under optimized conditions).


Subject(s)
Carbon/chemistry , Electrochemical Techniques/methods , Microcystins/isolation & purification , Titanium/chemistry , Water Purification/methods , Water/chemistry , Electrodes , Marine Toxins , Microcystins/chemistry , Tandem Mass Spectrometry
16.
Food Chem ; 217: 326-331, 2017 Feb 15.
Article in English | MEDLINE | ID: mdl-27664641

ABSTRACT

Red fruits are rich sources of antioxidant compounds with recognized health benefits. Since they are perishable, dried extracts emerge as more durable products and their quality control must include antioxidant capacity assays. In this study, the redox behavior of commercial dried products obtained from camu-camu, açai, acerola and cranberry red fruits was evaluated by electroanalytical approaches. The antioxidant potential was determined by 2,2-diphenyl-1-picrylhydrazyl free radical assay and the electrochemical index concept. The total phenol content was estimated by using a laccase based biosensor. A significant correlation was found between all methods and literature data. The voltammetric profile (cyclic, differential and square wave) obtained for each type of dried extract showed distinguishable features that were correlated with their main major markers, being also useful for identification purposes. The electrochemical methods were cheaper and more practical for evaluation of antioxidant properties and total phenol content in dried powders obtained from different red fruits.


Subject(s)
Antioxidants/analysis , Fruit/chemistry , Biphenyl Compounds/analysis , Phenols/analysis , Picrates/analysis , Plant Extracts/analysis , Vaccinium macrocarpon/chemistry
17.
Prep Biochem Biotechnol ; 46(8): 850-855, 2016 Nov 16.
Article in English | MEDLINE | ID: mdl-26930128

ABSTRACT

A new strategy for the construction of a polyphenol oxidase carbon paste biosensor for paracetamol detection is reported. The eggplant (Solanum melongena) was processed to collect the polyphenol oxidase as an enzyme that was incorporated in the carbon paste sensor construction. The constructed sensor displayed high sensitivity and good selection for paracetamol detection and recognition. Optimized conditions included pH 6.0 (highest activity), pH 7.0 (highest stability), pulse amplitude of 50 mV, and 15% of vegetable extract per carbon paste. The sensor displayed a linear range from 20 to 200 µM, with a detection limit of 5 µM. Application of the sensor to paracetamol determination in tablet and oral solutions have shown satisfactory results. The efficiency of the method showed very good repeatability ranging between 1.26 and 1.72% relative standard deviation for interday analysis, while recoveries for paracetamol varied between 97.5 and 99.8% for the voltammetric determination. The strategy for a simple, low cost, and efficient eggplant polyphenol oxidase sensor showcased in this work provides an opportunity for the detection of other phenolic compounds in various matrices.


Subject(s)
Acetaminophen/analysis , Analgesics, Non-Narcotic/analysis , Biosensing Techniques/methods , Catechol Oxidase/metabolism , Solanum melongena/enzymology , Acetaminophen/metabolism , Analgesics, Non-Narcotic/metabolism , Catechol Oxidase/isolation & purification , Enzymes, Immobilized/isolation & purification , Enzymes, Immobilized/metabolism , Limit of Detection , Solanum melongena/metabolism , Tablets
SELECTION OF CITATIONS
SEARCH DETAIL
...