Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 29(21): e202300717, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-36922745

ABSTRACT

Invited for the cover of this issue is the group of Cristina Trujillo at Trinity College Dublin and the University of Manchester. The image depicts a market run by hydrogen bond acceptors in which hydrogen-bond-donor "customers" are choosing their preferred binding mode "vegetable". Read the full text of the article at 10.1002/chem.202203577.

2.
Chemistry ; 29(21): e202203577, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-36701250

ABSTRACT

This computational work studies the different hydrogen bond (HB) binding modes that can be established between neighbouring HB donors and acceptors in structures with relevance in catalysis and biology. To analyse the electronic effect on the σ-hole, unsubstituted HB donors and ones with two different substituents, an electron withdrawing (EWG), and an electron donating (EDG) group, were studied. Upon complexation, three different binding modes were observed: bifurcated, parallel, and zigzag. It was found that, as a general trend, HBs within a parallel pattern are the strongest followed by those within bifurcated and zigzag binding modes, leading to a "competition" between the last two. Similar patterns and trends have been found in experimental structures found in a search within the CSD. In conclusion, even though the HB acceptors "rule" the pattern and strength of the HB interactions within the dimers, when there is an option for different binding modes within a particular dimer, the HB donors "choose" the type of binding established.

SELECTION OF CITATIONS
SEARCH DETAIL
...