Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 96(21): 8317-8324, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38739544

ABSTRACT

Nuclear magnetic resonance (NMR) longitudinal rotating frame relaxation time (T1ρ), rarely used in low-field NMR, can be more effective than conventional T1 and T2 relaxation times to differentiate polymorphic forms of solid pharmaceuticals. This could be attributed to T1ρ sensibility to structural and molecular dynamics that can be enhanced by changing the strength of the oscillating magnetic field (B1) of spinlock pulses. Here, we compared the capacity of T1, T2, and T1ρ to differentiate inactive (A) and active (C) crystalline forms of the World Health Organization essential drug Mebendazole. The results showed that T1 and T2 values of both forms were statistically identical at 0.47 T. Conversely, T1ρ of both forms measured with weak spinlock B1 fields, ranging from 0.08 to 0.80 mT were statistically different in the same spectrometer. The T1ρ also has the limit of detection to detect the presence of at least 10% of inactive A form in the active C form. Therefore, T1ρ, measured with weak spinlock B1 fields can be an effective, streamlined, and complementary approach for characterizing not only solid active pharmaceutical ingredients but other solid-state materials as well.


Subject(s)
Magnetic Resonance Spectroscopy , Magnetic Resonance Spectroscopy/methods , Mebendazole/chemistry , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/analysis , Magnetic Fields , Proof of Concept Study , Bulk Drugs
2.
Molecules ; 27(14)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35889306

ABSTRACT

Low Field Time-Domain Nuclear Magnetic Resonance (TD-NMR) relaxometry was used to determine moisture, fat, and defatted dry matter contents in "requeijão cremoso" (RC) processed cheese directly in commercial packaged (plastic cups or tubes with approximately 200 g). Forty-five samples of commercial RC types (traditional, light, lactose-free, vegan, and fiber) were analyzed using longitudinal (T1) and transverse (T2) relaxation measurements in a wide bore Halbach magnet (0.23 T) with a 100 mm probe. The T1 and T2 analyses were performed using CWFP-T1 (Continuous Wave Free Precession) and CPMG (Carr-Purcell-Meiboom-Gill) single shot pulses. The scores of the principal component analysis (PCA) of CWFP-T1 and CPMG signals did not show clustering related to the RC types. Optimization by variable selection was carried out with ordered predictors selection (OPS), providing simpler and predictive partial least squares (PLS) calibration models. The best results were obtained with CWFP-T1 data, with root-mean-square errors of prediction (RMSEP) of 1.38, 4.71, 3.28, and 3.00% for defatted dry mass, fat in the dry and wet matter, and moisture, respectively. Therefore, CWFP-T1 data modeled with chemometrics can be a fast method to monitor the quality of RC directly in commercial packages.


Subject(s)
Cheese , Chemometrics , Least-Squares Analysis , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy/methods
3.
Molecules ; 27(2)2022 Jan 17.
Article in English | MEDLINE | ID: mdl-35056881

ABSTRACT

1H time domain nuclear magnetic resonance (1H TD-NMR) at a low magnetic field becomes a powerful technique for the structure and dynamics characterization of soft organic materials. This relies mostly on the method sensitivity to the 1H-1H magnetic dipolar couplings, which depend on the molecular orientation with respect to the applied magnetic field. On the other hand, the good sensitivity of the 1H detection makes it possible to monitor real time processes that modify the dipolar coupling as a result of changes in the molecular mobility. In this regard, the so-called dipolar echoes technique can increase the sensitivity and accuracy of the real-time monitoring. In this article we evaluate the performance of commonly used 1H TD-NMR dipolar echo methods for probing polymerization reactions. As a proof of principle, we monitor the cure of a commercial epoxy resin, using techniques such as mixed-Magic Sandwich Echo (MSE), Rhim Kessemeier-Radiofrequency Optimized Solid Echo (RK-ROSE) and Dipolar Filtered Magic Sandwich Echo (DF-MSE). Applying a reaction kinetic model that supposes simultaneous autocatalytic and noncatalytic reaction pathways, we show the analysis to obtain the rate and activation energy for the epoxy curing reaction using the NMR data. The results obtained using the different NMR methods are in good agreement among them and also results reported in the literature for similar samples. This demonstrates that any of these dipolar echo pulse sequences can be efficiently used for monitoring and characterizing this type of reaction. Nonetheless, the DF-MSE method showed intrinsic advantages, such as easier data handling and processing, and seems to be the method of choice for monitoring this type of reaction. In general, the procedure is suitable for characterizing reactions involving the formation of solid products from liquid reagents, with some adaptations concerning the reaction model.

SELECTION OF CITATIONS
SEARCH DETAIL
...