Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Dermatol ; 32(12): 2072-2083, 2023 12.
Article in English | MEDLINE | ID: mdl-37726950

ABSTRACT

Cutaneous lupus erythematosus (CLE) is a heterogeneous autoimmune skin disease which occurs independently and in conjunction with systemic lupus erythematosus. Drug development for CLE is severely lacking. Anandamide (AEA) is a primary endocannabinoid which exhibits immunomodulatory effects through mixed cannabinoid receptor agonism. We evaluated AEA as topical treatment for CLE and assessed benefits of nanoparticle encapsulation (AEA-NP) on cutaneous drug penetration, delivery and biological activity. Compared to untreated controls, AEA-NP decreased IL-6 and MCP-1 in UVB-stimulated keratinocytes (p < 0.05) in vitro. In BALB/c mice, AEA-NP displayed improved cutaneous penetration, extended release and persistence of AEA in the follicular unit extending to the base after 24 h. Utilizing the MRL-lpr lupus murine model, twice weekly treatment of lesions with topical AEA-NP for 10 weeks led to decreased clinical and histologic lesion scores compared to unencapsulated AEA and untreated controls (p < 0.05). Prophylactic application of AEA-NP to commonly involved areas on MRL-lpr mice similarly resulted in decreased clinical and histologic scores when compared to controls (p < 0.05), and reduced C3 and IBA-1 in lesional tissue (p < 0.05). The demonstrated clinical and immunomodulatory effects of treatment with AEA support its potential as therapy for CLE. This work also suggests that encapsulation of AEA improves penetration and treatment efficacy. Future studies will be conducted to assess full therapeutic potential.


Subject(s)
Lupus Erythematosus, Cutaneous , Lupus Erythematosus, Systemic , Mice , Animals , Cytokines , Endocannabinoids/pharmacology , Endocannabinoids/therapeutic use , Disease Models, Animal , Mice, Inbred MRL lpr , Lupus Erythematosus, Cutaneous/drug therapy
2.
J Clin Invest ; 132(1)2022 01 04.
Article in English | MEDLINE | ID: mdl-34981775

ABSTRACT

T cells are central to the pathogenesis of lupus nephritis (LN), a common complication of systemic lupus erythematosus (SLE). CD6 and its ligand, activated leukocyte cell adhesion molecule (ALCAM), are involved in T cell activation and trafficking. Previously, we showed that soluble ALCAM is increased in urine (uALCAM) of patients with LN, suggesting that this pathway contributes to disease. To investigate, uALCAM was examined in 1038 patients with SLE and LN from 5 ethnically diverse cohorts; CD6 and ALCAM expression was assessed in LN kidney cells; and disease contribution was tested via antibody blockade of CD6 in murine models of SLE and acute glomerulonephritis. Extended cohort analysis offered resounding validation of uALCAM as a biomarker that distinguishes active renal involvement in SLE, irrespective of ethnicity. ALCAM was expressed by renal structural cells whereas CD6 expression was exclusive to T cells, with elevated numbers of CD6+ and ALCAM+ cells in patients with LN. CD6 blockade in models of spontaneous lupus and immune-complex glomerulonephritis revealed significant decreases in immune cells, inflammatory markers, and disease measures. Our data demonstrate the contribution of the CD6/ALCAM pathway to LN and SLE, supporting its use as a disease biomarker and therapeutic target.


Subject(s)
Antigens, CD/immunology , Antigens, Differentiation, T-Lymphocyte/immunology , Cell Adhesion Molecules, Neuronal/immunology , Fetal Proteins/immunology , Kidney/immunology , Lupus Nephritis/immunology , Lymphocyte Activation , T-Lymphocytes/immunology , Animals , Female , Humans , Kidney/pathology , Lupus Nephritis/pathology , Mice , T-Lymphocytes/pathology
3.
Clin Immunol ; 223: 108640, 2021 02.
Article in English | MEDLINE | ID: mdl-33296718

ABSTRACT

Lupus nephritis (LN) is a serious end organ complication of systemic lupus erythematosus. Nephrotoxic serum nephritis (NTN) is an inducible model of LN, which utilizes passive transfer of pre-formed nephrotoxic antibodies to initiate disease. In previous studies, we demonstrated that the Bruton's tyrosine kinase inhibitor, BI-BTK-1, prevents the development of nephritis in NTN when treatment was started prior to nephrotoxic serum transfer, and reverses established proteinuria as well. We manipulated the initiation and duration of BI-BTK-1 therapy in NTN to study its delayed therapeutic effects when treatment is given later in the disease course, as well as to further understand what effect BI-BTK-1 is having to prevent initiation of nephritis with early treatment. Early treatment and remission induction each correlated with decreased inflammatory macrophages, CD4+ and CD8+ T cells, and decreased B220+ B cells. Additionally, an increased proportion of resident macrophages within the CD45+ population favored a delay of disease onset and remission induction. We also studied the cellular processes involved in reactivation of nephritis by withdrawing BI-BTK-1 treatment at different time points. Treatment cessation led to either early or later onset of renal flares inversely dependent on the initial duration of BTK inhibition, as assessed by increased proteinuria and BUN levels and worse renal pathology. These flares were associated with an increase in kidney CD45+ infiltrates, including myeloid cell populations. IL-6, CD14, and CCL2 were also increased in mice developing late flares. These analyses point to the role of macrophages as an important contributor to the pathogenesis of immune mediated nephritis, and further support the therapeutic potential of BTK inhibition in this disease and related conditions.


Subject(s)
B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Kidney/pathology , Lupus Nephritis/drug therapy , Macrophages/immunology , Protein Kinase Inhibitors/therapeutic use , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Animals , Disease Models, Animal , Humans , Leukocyte Common Antigens/metabolism , Mice , Mice, 129 Strain , Molecular Targeted Therapy , Protein Kinase Inhibitors/pharmacology , Proteinuria
4.
Adv Exp Med Biol ; 1255: 195-202, 2020.
Article in English | MEDLINE | ID: mdl-32949401

ABSTRACT

In this chapter, we discussed some of the specific uses of scRNA-seq in exploring viral infections and diseases of the kidney and pancreas. This review, however, is by no means exhaustive, and indeed this technology has advanced the study of pulmonary and cardiac diseases, transplant immunology, cancer, and many others as well. Nevertheless, the above reviewed studies do illustrate the utility and resolution of scRNA-seq in understanding exact cellular compositions, discovering heterogeneity within cellular expression patterns, and uncovering clues that may eventually lead to the development of more targeted and personalized therapies. Additionally, the increasing availability of whole tissue cellular atlases in both health and disease as a result of scRNA-seq studies provides an important resource to better understand complicated molecular signaling patterns and events that are similar and different between human diseases.


Subject(s)
Kidney Diseases/genetics , Pancreatic Diseases/genetics , Sequence Analysis, RNA , Single-Cell Analysis , Virus Diseases/genetics , Humans
5.
J Autoimmun ; 98: 33-43, 2019 03.
Article in English | MEDLINE | ID: mdl-30612857

ABSTRACT

Immune-mediated glomerulonephritis is a serious end organ pathology that commonly affects patients with systemic lupus erythematosus (SLE). A classic murine model used to study lupus nephritis (LN) is nephrotoxic serum nephritis (NTN), in which mice are passively transferred nephrotoxic antibodies. We have previously shown that macrophages are important in the pathogenesis of LN. To further investigate the mechanism by which macrophages contribute to the pathogenic process, and to determine if this contribution is mediated by NF-κB signaling, we created B6 mice which had RelA knocked out in myeloid cells, thus inhibiting classical NF-κB signaling in this cell lineage. We induced NTN in this strain to assess the importance of macrophage derived NF-κB signaling in contributing to disease progression. Myeloid cell RelA knock out (KO) mice injected with nephrotoxic serum had significantly attenuated proteinuria, lower BUN levels, and improved renal histopathology compared to control injected wildtype B6 mice (WT). Inhibiting myeloid NF-κB signaling also decreased inflammatory modulators within the kidneys. We found significant decreases of IL-1a, IFNg, and IL-6 in kidneys from KO mice, but higher IL-10 expression. Flow cytometry revealed decreased numbers of kidney infiltrating classically activated macrophages in KO mice as well. Our results indicate that macrophage NF-κB signaling is instrumental in the contribution of this cell type to the pathogenesis of NTN. While approaches which decrease macrophage numbers can be effective in immune mediated nephritis, more targeted treatments directed at modulating macrophage signaling and/or function could be beneficial, at least in the early stages of disease.


Subject(s)
Kidney/metabolism , Macrophages/immunology , Transcription Factor RelA/metabolism , Animals , Cytokines/metabolism , Disease Models, Animal , Humans , Inflammation Mediators/metabolism , Kidney/pathology , Lupus Erythematosus, Systemic , Lupus Nephritis , Macrophage Activation/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction , Transcription Factor RelA/genetics
6.
Clin Immunol ; 197: 205-218, 2018 12.
Article in English | MEDLINE | ID: mdl-30339790

ABSTRACT

Lupus nephritis is a common disease manifestation of SLE, in which immune complex deposition and macrophage activation are important contributors to disease pathogenesis. Bruton's tyrosine kinase (BTK) plays an important role in both B cell and FcgammaR mediated myeloid cell activation. In the current study, we examined the efficacy of BI-BTK-1, a recently described irreversible BTK inhibitor, in the classical NZB × NZW F1 (NZB/W) and MRL/lpr spontaneous mouse models of SLE. NZB/W mice were randomly assigned to a treatment (0.3 mg/kg, 1 mg/kg, 3 mg/kg and 10 mg/kg) or control group and began treatment at 22 weeks of age. The experimental setup was similar in MRL/lpr mice, but with a single treated (10 mg/kg, beginning at 8-9 weeks of age) and control group. A separate experiment was performed in the MRL/lpr strain to assess the ability of BI-BTK-1 to reverse established kidney disease. Early treatment with BI-BTK-1 significantly protected NZB/W and MRL/lpr mice from the development of proteinuria, correlating with significant renal histological protection, decreased anti-DNA titers, and increased survival in both strains. BI-BTK-1 treated mice displayed a significant decrease in nephritis-associated inflammatory mediators (e.g. LCN2 and IL-6) in the kidney, combined with a significant inhibition of immune cell infiltration and accumulation. Importantly, BI-BTK-1 treatment resulted in the reversal of established kidney disease. BTK inhibition significantly reduced total B cell numbers and all B cell subsets (immature, transitional, follicular, marginal zone, and class switched) in the spleen of NZB/W mice. Overall, the significant efficacy of BI-BTK-1 in ameliorating multiple pathological endpoints associated with kidney disease in two distinct murine models of spontaneous lupus nephritis provides a strong rationale for BTK inhibition as a promising treatment approach for lupus nephritis.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Kidney/drug effects , Lupus Nephritis/pathology , Protein Kinase Inhibitors/pharmacology , Animals , Antibodies, Antinuclear/drug effects , Antibodies, Antinuclear/immunology , B-Lymphocyte Subsets/drug effects , B-Lymphocyte Subsets/immunology , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , DNA/immunology , Disease Models, Animal , Interleukin-6/immunology , Interleukin-6/metabolism , Kidney/immunology , Kidney/metabolism , Kidney/pathology , Lipocalin-2/drug effects , Lipocalin-2/immunology , Lipocalin-2/metabolism , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/pathology , Lupus Nephritis/immunology , Mice , Mice, Inbred MRL lpr , Mice, Inbred NZB , Proteinuria/immunology , Random Allocation , Spleen/cytology , Spleen/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...