Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 380(6649): 1053-1058, 2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37289895

ABSTRACT

Challenges in quantifying how force affects bond formation have hindered the widespread adoption of mechanochemistry. We used parallel tip-based methods to determine reaction rates, activation energies, and activation volumes of force-accelerated [4+2] Diels-Alder cycloadditions between surface-immobilized anthracene and four dienophiles that differ in electronic and steric demand. The rate dependences on pressure were unexpectedly strong, and substantial differences were observed between the dienophiles. Multiscale modeling demonstrated that in proximity to a surface, mechanochemical trajectories ensued that were distinct from those observed solvothermally or under hydrostatic pressure. These results provide a framework for anticipating how experimental geometry, molecular confinement, and directed force contribute to mechanochemical kinetics.

SELECTION OF CITATIONS
SEARCH DETAIL
...