Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
PLoS Genet ; 20(5): e1011295, 2024 May.
Article in English | MEDLINE | ID: mdl-38820540

ABSTRACT

Bacterial symbionts, with their shorter generation times and capacity for horizontal gene transfer (HGT), play a critical role in allowing marine organisms to cope with environmental change. The closure of the Isthmus of Panama created distinct environmental conditions in the Tropical Eastern Pacific (TEP) and Caribbean, offering a "natural experiment" for studying how closely related animals evolve and adapt under environmental change. However, the role of bacterial symbionts in this process is often overlooked. We sequenced the genomes of endosymbiotic bacteria in two sets of sister species of chemosymbiotic bivalves from the genera Codakia and Ctena (family Lucinidae) collected on either side of the Isthmus, to investigate how differing environmental conditions have influenced the selection of symbionts and their metabolic capabilities. The lucinid sister species hosted different Candidatus Thiodiazotropha symbionts and only those from the Caribbean had the genetic potential for nitrogen fixation, while those from the TEP did not. Interestingly, this nitrogen-fixing ability did not correspond to symbiont phylogeny, suggesting convergent evolution of nitrogen fixation potential under nutrient-poor conditions. Reconstructing the evolutionary history of the nifHDKT operon by including other lucinid symbiont genomes from around the world further revealed that the last common ancestor (LCA) of Ca. Thiodiazotropha lacked nif genes, and populations in oligotrophic habitats later re-acquired the nif operon through HGT from the Sedimenticola symbiont lineage. Our study suggests that HGT of the nif operon has facilitated niche diversification of the globally distributed Ca. Thiodiazotropha endolucinida species clade. It highlights the importance of nitrogen availability in driving the ecological diversification of chemosynthetic symbiont species and the role that bacterial symbionts may play in the adaptation of marine organisms to changing environmental conditions.


Subject(s)
Bivalvia , Gene Transfer, Horizontal , Nitrogen Fixation , Nitrogen , Phylogeny , Symbiosis , Symbiosis/genetics , Animals , Nitrogen Fixation/genetics , Nitrogen/metabolism , Bivalvia/microbiology , Bivalvia/genetics , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Adaptation, Physiological/genetics , Genome, Bacterial , Caribbean Region , Panama
2.
Qual Rep ; 27(10): 2343-2358, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36425903

ABSTRACT

As the United States' aging population grows, there will be increased prevalence of individuals living with Alzheimer's Disease and related dementias (ADRD), who largely rely on the support of their family caregivers. Family caregivers residing in rural areas face additional challenges with managing caregiving responsibilities and navigating support services. The purpose of this multilevel phenomenological qualitative study was to explore the assets, unique needs, and resources of rural-residing ADRD caregivers from the caregiver, provider, and policy influencers' perspectives. The study took place between 2019 through 2021 in northern Arizona, a largely rural and geographically vast area home to caregivers from diverse backgrounds. Twenty-seven caregivers to a loved one with ADRD participated in focus groups. Twelve health and social services providers and twelve policy influencers, those involved in leadership positions for aging programs or advocacy groups, completed individual interviews. Caregivers demonstrate many assets which contribute to their ability to manage and cope with their caregiving role. However, caregivers face a series of issues related to their caregiving role and need early and ongoing education regarding ADRD. There is a lack of resources available in rural areas, in particular providers, making it challenging to obtain needed resources necessary to support their loved one with ADRD. Furthermore, there is a need for more providers trained in working with aging adults and those experiencing ADRD, and a need for more culturally relevant resources.

4.
Rev Argent Microbiol ; 47(4): 335-43, 2015.
Article in English | MEDLINE | ID: mdl-26652262

ABSTRACT

It has been established that a decrease in the population of Gluconacetobacter diazotrophicus associated with sugarcane occurs after nitrogen fertilization. This fact could be due to a direct influence of NH(4)NO(3) on bacterial cells or to changes in plant physiology after fertilizer addition, affecting bacterial establishment. In this work, we observed that survival of G. diazotrophicus was directly influenced when 44.8mM of NH(4)NO(3) (640mgN/plant) was used for in vitro experiments. Furthermore, micropropagated sugarcane plantlets were inoculated with G. diazotrophicus and used for split root experiments, in which both ends of the system were fertilized with a basal level of NH(4)NO(3) (0.35mM; 10mgN/plant). Twenty days post inoculation (dpi) one half of the plants were fertilized with a high dose of NH(4)NO(3) (6.3mM; 180 mgN/plant) on one end of the system. This nitrogen level was lower than that directly affecting G. diazotrophicus cells; however, it caused a decrease in the bacterial population in comparison with control plants fertilized with basal nitrogen levels. The decrease in the population of G. diazotrophicus was higher in pots fertilized with a basal nitrogen level when compared with the corresponding end supplied with high levels of NH4NO3 (100dpi; 80 days post fertilization) of the same plant system. These observations suggest that the high nitrogen level added to the plants induce systemic physiological changes that affect the establishment of G. diazotrophicus.


Subject(s)
Gluconacetobacter/isolation & purification , Nitrogen/administration & dosage , Plant Physiological Phenomena , Plant Roots/microbiology , Saccharum/microbiology
5.
Rev. argent. microbiol ; 47(4): 335-343, dic. 2015. ilus, tab
Article in English | LILACS | ID: biblio-843139

ABSTRACT

It has been established that a decrease in the population of Gluconacetobacter diazotrophicus associated with sugarcane occurs after nitrogen fertilization. This fact could be due to a direct influence of NH4NO3 on bacterial cells or to changes in plant physiology after fertilizer addition, affecting bacterial establishment. In this work, we observed that survival of G. diazotrophicus was directly influenced when 44.8 mM of NH4NO3 (640 mg N/plant) was used for in vitro experiments. Furthermore, micropropagated sugarcane plantlets were inoculated with G. diazotrophicus and used for split root experiments, in which both ends of the system were fertilized with a basal level of NH4NO3 (0.35 mM; 10 mg N/plant). Twenty days post inoculation (dpi) one half of the plants were fertilized with a high dose of NH4NO3 (6.3 mM; 180 mg N/plant) on one end of the system. This nitrogen level was lower than that directly affecting G. diazotrophicus cells; however, it caused a decrease in the bacterial population in comparison with control plants fertilized with basal nitrogen levels. The decrease in the population of G. diazotrophicus was higher in pots fertilized with a basal nitrogen level when compared with the corresponding end supplied with high levels of NH4NO3 (100 dpi; 80 days post fertilization) of the same plant system. These observations suggest that the high nitrogen level added to the plants induce systemic physiological changes that affect the establishment of G. diazotrophicus.


La población de Gluconacetobacter diazotrophicus asociada a la caña de azúcar disminuye después de la fertilización nitrogenada, lo cual podría ocurrir por la influencia directa del NH4NO3 sobre la supervivencia bacteriana, o por cambios en la fisiología de las plantas, que impiden el establecimiento bacteriano. En el presente trabajo se observó que en experimentos in vitro la supervivencia de G. diazotrophicus fue influenciada por 44,8 mM de NH4NO3 (640 mg N/plant). Además, G. diazotrophicus fue inoculado en plántulas micropropagadas de caña de azúcar, que fueron usadas para realizar experimentos de raíz dividida, en las que ambos extremos de los sistemas se fertilizaron con un nivel basal de NH4NO3 (0,35 mM; 10 mg N/planta). A los 20 días posteriores a la inoculación (dpi), la mitad de plantas fueron fertilizadas en uno de sus extremos con una dosis elevada de NH4NO3 (6,3 mM; 180 mg of N/plant). Este nivel fue menor al que afectó directamente a las células de G. diazotrophicus; sin embargo, provocó una disminución de la población bacteriana en comparación con plantas testigo fertilizadas con niveles basales de nitrógeno. La disminución de la población fue mayor para raíces fertilizadas con un nivel basal de nitrógeno en comparación con las raíces fertilizadas con altos niveles del mismo sistema de plantas (100 dpi; 80 días posfertilización). Estas observaciones indican que el alto nivel de nitrógeno añadido a las plantas inducen cambios fisiológicos sistémicos que afectan el establecimiento de G. diazotrophicus.


Subject(s)
Plant Physiological Phenomena , Gluconacetobacter/drug effects , Fertilizers/adverse effects , Plant Physiological Phenomena , Saccharum/growth & development , Saccharum/physiology , Fertilizers/analysis
6.
Mol Phylogenet Evol ; 71: 113-26, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24291658

ABSTRACT

The family Aglajidae includes several species of benthic, carnivorous cephalaspidean sea slugs, which generally lack a radula, have an internal shell, a posterior shield with short to moderate caudal lobes, and sensory cilia present on the head. The present study reports a phylogenetic analysis of the Aglajidae based on the mitochondrial genes 16S and CO1 and the nuclear gene H3, including 160 specimens of 54 species, that confirms the monophyly of Aglajidae as well as most taxonomically established genera, with some exceptions. Although support values are low for some clades, the analysis recovered the following clades within the Aglajidae: Odontoglaja, Nakamigawaia, and Melanochlamys. Chelidonura appears to be paraphyletic and the monophyly of a Chelidonura-Navanax-Aglaja clade is strongly supported in the Bayesian analysis, plus three of the four individual gene trees (COI, COI without 3rd codon positions, 16S and H3). However, the relatively low levels of support in the maximum likelihood analyses prevent us from proposing the synonymization of Navanax and Aglaja with Chelidonura. Melanochlamys is the sister clade of Chelidonura+Aglaja+Navanax. Odontoglaja is basal to the rest of the Aglajidae, confirming previous hypotheses on the loss of the radula in Aglajidae. Nakamigawaia and Melanochlamys are monophyletic, and should be maintained as valid. The monophyly of Philinopsis is strongly supported in the Bayesian analysis and in three of the four individual gene trees. Further research on this group is necessary to further affirm the monophyly of Chelidonura+Aglaja+Navanax and Philinopsis. Based on the results of this phylogenetic analysis, a reclassification of the taxonomy of Aglajidae is probably necessary. Additional genes should provide more information and probably fully resolve this situation. The present molecular study (including ABGD species delineation analyses) suggests the existence of previously undetected species complexes that require additional study to determine the extent of undocumented biodiversity.


Subject(s)
Cell Nucleus/genetics , DNA, Mitochondrial/genetics , DNA/genetics , Gastropoda/genetics , Phylogeny , Animals , Bayes Theorem , Sequence Analysis, DNA
7.
Rev. argent. microbiol ; 43(4): 287-293, dic. 2011. ilus, tab
Article in English | LILACS | ID: lil-634706

ABSTRACT

A maize rhizosphere isolate was phenotypically and genotypically characterized and identifed as Enterobacter spp. bacterium. Germinated seeds were inoculated, the plantlets were sown in vermiculite and in soil and grown under laboratory and feld conditions, respectively. The adherence, colonization and plant growth promotion capability of Enterobacter sp. UAPS03001 was evaluated in "Rojo-Criollo" maize under laboratory conditions. Twenty days after inoculation, the treated plantlets showed larger biomass than non-inoculated ones. In feld grown plants, the kernel biomass was also greater in inoculated than in non-inoculated plants. The inoculation of maize sprouts with plant growth- promoting bacteria before their sowing in the feld would be an alternative practice for achieving successful yield in temporal agriculture.


En este trabajo se aisló una bacteria de la rizósfera de maíz, que fue caracterizada mediante métodos fenotípicos y genotípicos e identifcada como Enterobacter sp. UAPS03001. La bacteria fue inoculada en semillas de maíz "Rojo-Criollo" germinadas en forma axénica. Las semillas germinadas e inoculadas se plantaron en vermiculita y posteriormente las plántulas fueron cultivadas en vermiculita o en suelo, para evaluar el efecto promotor del crecimiento vegetal de dicha bacteria, bajo condiciones de laboratorio y de campo. Bajo condiciones de laboratorio, también se evaluó la capacidad de esta cepa para adherirse a las plantas de maíz y colonizarlas. Veinte días después de la inoculación, las plántulas inoculadas mostraron una biomasa mayor con referencia a las no inoculadas. En campo, la biomasa de la mazorca fue también mayor en las plantas inoculadas respecto de las plantas no inoculadas. La inoculación de germinados de maíz con una bacteria promotora del crecimiento vegetal y su posterior transferencia a campo podría ser una práctica alternativa para llevar a cabo una producción exitosa en agricultura de temporal.


Subject(s)
Agricultural Inoculants/physiology , Agriculture/methods , Enterobacter/physiology , Zea mays/microbiology , Bacterial Adhesion , Biomass , Drug Resistance, Multiple, Bacterial , Enterobacter/drug effects , Enterobacter/isolation & purification , Germination , Rhizosphere , Soil Microbiology , Seedlings/growth & development , Seedlings/microbiology , Seeds/physiology , Zea mays/growth & development
8.
Rev Argent Microbiol ; 43(4): 287-93, 2011.
Article in English | MEDLINE | ID: mdl-22274827

ABSTRACT

A maize rhizosphere isolate was phenotypically and genotypically characterized and identified as Enterobacter spp. bacterium. Germinated seeds were inoculated, the plantlets were sown in vermiculite and in soil and grown under laboratory and field conditions, respectively. The adherence, colonization and plant growth promotion capability of Enterobacter sp. UAPS03001 was evaluated in "Rojo-Criollo" maize under laboratory conditions. Twenty days after inoculation, the treated plantlets showed larger biomass than non-inoculated ones. In field grown plants, the kernel biomass was also greater in inoculated than in non-inoculated plants. The inoculation of maize sprouts with plant growth- promoting bacteria before their sowing in the field would be an alternative practice for achieving successful yield in temporal agriculture.


Subject(s)
Agricultural Inoculants/physiology , Agriculture/methods , Enterobacter/physiology , Zea mays/microbiology , Bacterial Adhesion , Biomass , Drug Resistance, Multiple, Bacterial , Enterobacter/drug effects , Enterobacter/isolation & purification , Germination , Rhizosphere , Seedlings/growth & development , Seedlings/microbiology , Seeds/physiology , Soil Microbiology , Zea mays/growth & development
9.
Rev. biol. trop ; 54(4): 1295-1305, dic. 2006. ilus, tab
Article in English | LILACS | ID: lil-492154

ABSTRACT

A new species of zephyrinid nudibranch of the genus Janolus Bergh 1884 is described from the Pacific Coast of North America and Costa Rica. J. anulatus sp. nov. differs from other species of Janolus by its external and internal morphology. J. anulatus has a brown or white body with pink, white, and brown spots, smooth papillae epithelium at the base and papillated in the distal part, unbranched digestive gland ducts, smooth jaws, and smooth rachidian and lateral teeth. The species is compared with other species from the Panamic Province and the Western Atlantic. A new extension range of J. barbarensis is documented.


Una nueva especie de nudibranquio zefirínido del género Janolus Bergh 1884 es descrita de la costa pacífica de Norte América y Costa Rica. J. anulatus sp. nov. difiere de otras especies de Janolus por su morfología externa e interna. J. anulatus tiene un cuerpo café o blanco con manchas rosadas, blancas o cafés, papila del epitelio lisa en la base y con papilas en la parte distal, ductos de la glándula digestiva no ramificados, mandíbulas lisas y dientes laterales y raquidios lisos. La especie es comparada con otras especies de la Provincia Panámica y el Atlántico Oeste. Una nueva extensión de ámbito de J. barbarensis es documentada.


Subject(s)
Animals , Gastropoda/anatomy & histology , Gastropoda/classification , Costa Rica
10.
Rev Biol Trop ; 54(4): 1295-305, 2006 Dec.
Article in English | MEDLINE | ID: mdl-18457165

ABSTRACT

A new species of zephyrinid nudibranch of the genus Janolus Bergh 1884 is described from the Pacific Coast of North America and Costa Rica. J. anulatus sp. nov. differs from other species of Janolus by its external and internal morphology. J. anulatus has a brown or white body with pink, white, and brown spots, smooth papillae epithelium at the base and papillated in the distal part, unbranched digestive gland ducts, smooth jaws, and smooth rachidian and lateral teeth. The species is compared with other species from the Panamic Province and the Western Atlantic. A new extension range of J. barbarensis is documented.


Subject(s)
Gastropoda/anatomy & histology , Gastropoda/classification , Animals , Costa Rica
SELECTION OF CITATIONS
SEARCH DETAIL
...