Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biosci Rep ; 44(6)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38836326

ABSTRACT

Cumulative research findings support the idea that endocytic trafficking is crucial in regulating receptor signaling and associated diseases. Specifically, strong evidence points to the involvement of sorting nexins (SNXs), particularly SNX1 and SNX2, in the signaling and trafficking of the receptor tyrosine kinase (RTK) MET in colorectal cancer (CRC). Activation of hepatocyte growth factor (HGF) receptor MET is a key driver of CRC progression. In the present study, we utilized human HCT116 CRC cells with SNX1 and SNX2 genes knocked out to demonstrate that their absence leads to a delay in MET entering early endosomes. This delay results in increased phosphorylation of both MET and AKT upon HGF stimulation, while ERK1/2 (extracellular signal-regulated kinases 1 and 2) phosphorylation remains unaffected. Despite these changes, HGF-induced cell proliferation, scattering, and migration remain similar between the parental and the SNX1/2 knockout cells. However, in the absence of SNX1 and SNX2, these cells exhibit increased resistance to TRAIL-induced apoptosis. This research underscores the intricate relationship between intracellular trafficking, receptor signaling, and cellular responses and demonstrates for the first time that the modulation of MET trafficking by SNX1 and SNX2 is critical for receptor signaling that may exacerbate the disease.


Subject(s)
Cell Movement , Cell Proliferation , Colorectal Neoplasms , Hepatocyte Growth Factor , Proto-Oncogene Proteins c-met , Sorting Nexins , Humans , Sorting Nexins/metabolism , Sorting Nexins/genetics , Proto-Oncogene Proteins c-met/metabolism , Proto-Oncogene Proteins c-met/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , HCT116 Cells , Hepatocyte Growth Factor/metabolism , Signal Transduction , Phosphorylation , Endosomes/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...