Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
CNS Neurosci Ther ; 30(4): e14727, 2024 04.
Article in English | MEDLINE | ID: mdl-38644593

ABSTRACT

AIMS: Ventral pathway circuits are constituted by the interconnected brain areas that are distributed throughout the brain. These brain circuits are primarily involved in processing of object related information in brain. However, their role in object recognition memory (ORM) enhancement remains unknown. Here, we have studied on the implication of these circuits in ORM enhancement and in reversal of ORM deficit in aging. METHODS: The brain areas interconnected to ventral pathway circuits in rat brain were activated by an expression of a protein called regulator of G-protein signaling 14 of 414 amino acids (RGS14414). RGS14414 is an ORM enhancer and therefore used here as a gain-in-function tool. ORM test and immunohistochemistry, lesions, neuronal arborization, and knockdown studies were performed to uncover the novel function of ventral pathway circuits. RESULTS: An activation of each of the brain areas interconnected to ventral pathway circuits individually induced enhancement in ORM; however, same treatment in brain areas not interconnected to ventral pathway circuits produced no effect. Further study in perirhinal cortex (PRh), area V2 of visual cortex and frontal cortex (FrC), which are brain areas that have been shown to be involved in ORM and are interconnected to ventral pathway circuits, revealed that ORM enhancement seen after the activation of any one of the three brain areas was unaffected by the lesions in other two brain areas either individually in each area or even concurrently in both areas. This ORM enhancement in all three brain areas was associated to increase in structural plasticity of pyramidal neurons where more than 2-fold higher dendritic spines were observed. Additionally, we found that an activation of either PRh, area V2, or FrC not only was adequate but also was sufficient for the reversal of ORM deficit in aging rats, and the blockade of RGS14414 activity led to loss in increase in dendritic spine density and failure in reversal of ORM deficit. CONCLUSIONS: These results suggest that brain areas interconnected to ventral pathway circuits facilitate ORM enhancement by an increase in synaptic connectivity between the local brain area circuits and the passing by ventral pathway circuits and an upregulation in activity of ventral pathway circuits. In addition, the finding of the reversal of ORM deficit through activation of an interconnected brain area might serve as a platform for developing not only therapy against memory deficits but also strategies for other brain diseases in which neuronal circuits are compromised.


Subject(s)
Brain , Memory Disorders , RGS Proteins , Recognition, Psychology , Animals , Recognition, Psychology/physiology , Male , Rats , RGS Proteins/metabolism , RGS Proteins/genetics , Neural Pathways , Aging/physiology
2.
J Neurosci ; 42(37): 7094-7109, 2022 09 14.
Article in English | MEDLINE | ID: mdl-35927034

ABSTRACT

The retrosplenial cortex (RSC) plays a significant role in spatial learning and memory and is functionally disrupted in the early stages of Alzheimer's disease (AD). In order to investigate neurophysiological correlates of spatial learning and memory in this region we employed in vivo electrophysiology in awake and freely moving male mice, comparing neural activity between wild-type and J20 mice, a transgenic model of AD-associated amyloidopathy. To determine the response of the RSC to environmental novelty local field potentials (LFPs) were recorded while mice explored novel and familiar recording arenas. In familiar environments we detected short, phasic bursts of ß (20-30 Hz) oscillations (ß bursts), which arose at a low but steady rate. Exposure to a novel environment rapidly initiated a dramatic increase in the rate, size and duration of ß bursts. Additionally, θ-α/ß cross-frequency coupling was significantly higher during novelty, and spiking of neurons in the RSC was significantly enhanced during ß bursts. Finally, excessive ß bursting was seen in J20 mice, including increased ß bursting during novelty and familiarity, yet a loss of coupling between ß bursts and spiking activity. These findings support the concept that ß bursting may be responsible for the activation and reactivation of neuronal ensembles underpinning the formation and maintenance of cortical representations, and that disruptions to this activity in J20 mice may underlie cognitive impairments seen in these animals.SIGNIFICANCE STATEMENT The retrosplenial cortex (RSC) is thought to be involved in the formation, recall and consolidation of contextual memory. The discovery of bursts of ß oscillations in this region, which are associated with increased neuronal spiking and strongly upregulated while mice explore novel environments, provides a potential mechanism for the activation of neuronal ensembles, which may underlie the formation of cortical representations of context. Excessive ß bursting in the RSC of J20 mice, a mouse model of Alzheimer's disease (AD), alongside the disassociation of ß bursting from neuronal spiking, may underlie spatial memory impairments previously shown in these mice. These findings introduce a novel neurophysiological correlate of spatial learning and memory, and a potentially new form of AD-related cortical dysfunction.


Subject(s)
Alzheimer Disease , Gyrus Cinguli , Alzheimer Disease/genetics , Animals , Disease Models, Animal , Gyrus Cinguli/physiology , Hippocampus/physiology , Male , Mice , Neurons/physiology , Spatial Memory/physiology
3.
Cereb Cortex ; 32(9): 1894-1910, 2022 04 20.
Article in English | MEDLINE | ID: mdl-34519346

ABSTRACT

The remedy of memory deficits has been inadequate, as all potential candidates studied thus far have shown limited to no effects and a search for an effective strategy is ongoing. Here, we show that an expression of RGS14414 in rat perirhinal cortex (PRh) produced long-lasting object recognition memory (ORM) enhancement and that this effect was mediated through the upregulation of 14-3-3ζ, which caused a boost in BDNF protein levels and increase in pyramidal neuron dendritic arborization and dendritic spine number. A knockdown of the 14-3-3ζ gene in rat or the deletion of the BDNF gene in mice caused complete loss in ORM enhancement and increase in BDNF protein levels and neuronal plasticity, indicating that 14-3-3ζ-BDNF pathway-mediated structural plasticity is an essential step in RGS14414-induced memory enhancement. We further observed that RGS14414 treatment was able to prevent deficits in recognition, spatial, and temporal memory, which are types of memory that are particularly affected in patients with memory dysfunctions, in rodent models of aging and Alzheimer's disease. These results suggest that 14-3-3ζ-BDNF pathway might play an important role in the maintenance of the synaptic structures in PRh that support memory functions and that RGS14414-mediated activation of this pathway could serve as a remedy to treat memory deficits.


Subject(s)
Perirhinal Cortex , 14-3-3 Proteins/genetics , 14-3-3 Proteins/metabolism , 14-3-3 Proteins/pharmacology , Animals , Brain-Derived Neurotrophic Factor/metabolism , Hippocampus/metabolism , Humans , Memory Disorders/metabolism , Memory Disorders/prevention & control , Mice , Neuronal Plasticity/physiology , Rats , Rodentia/metabolism
4.
FASEB J ; 33(11): 11804-11820, 2019 11.
Article in English | MEDLINE | ID: mdl-31365833

ABSTRACT

Memory deficits affect a large proportion of the human population and are associated with aging and many neurologic, neurodegenerative, and psychiatric diseases. Treatment of this mental disorder has been disappointing because all potential candidates studied thus far have failed to produce consistent effects across various types of memory and have shown limited to no effects on memory deficits. Here, we show that the promotion of neuronal arborization through the expression of the regulator of G-protein signaling 14 of 414 amino acids (RGS14414) not only induced robust enhancement of multiple types of memory but was also sufficient for the recovery of recognition, spatial, and temporal memory, which are kinds of episodic memory that are primarily affected in patients or individuals with memory dysfunction. We observed that a surge in neuronal arborization was mediated by up-regulation of brain-derived neurotrophic factor (BDNF) signaling and that the deletion of BDNF abrogated both neuronal arborization activation and memory enhancement. The activation of BDNF-dependent neuronal arborization generated almost 2-fold increases in synapse numbers in dendrites of pyramidal neurons and in neurites of nonpyramidal neurons. This increase in synaptic connections might have evoked reorganization within neuronal circuits and eventually supported an increase in the activity of such circuits. Thus, in addition to showing the potential of RGS14414 for rescuing memory deficits, our results suggest that a boost in circuit activity could facilitate memory enhancement and the reversal of memory deficits.-Masmudi-Martín, M., Navarro-Lobato, I., López-Aranda, M. F., Delgado, G., Martín-Montañez, E., Quiros-Ortega, M. E., Carretero-Rey, M., Narváez, L., Garcia-Garrido, M. F., Posadas, S., López-Téllez, J. F., Blanco, E., Jiménez-Recuerda, I., Granados-Durán, P., Paez-Rueda, J., López, J. C., Khan, Z. U. RGS14414 treatment induces memory enhancement and rescues episodic memory deficits.


Subject(s)
Brain/drug effects , Memory Disorders/drug therapy , Neuronal Plasticity/drug effects , Peptide Fragments/pharmacology , RGS Proteins/pharmacology , Animals , Brain/physiopathology , Hippocampus/drug effects , Hippocampus/metabolism , Memory Disorders/metabolism , Memory, Episodic , Mice , Neurites/metabolism , Neuronal Plasticity/physiology , Neurons/metabolism , Rats , Signal Transduction/drug effects , Synapses/drug effects , Synapses/metabolism
5.
Front Neurol ; 8: 89, 2017.
Article in English | MEDLINE | ID: mdl-28348546

ABSTRACT

OBJECTIVES: The goal of this study was to assess mitochondrial function, energy, and purine metabolism, protein synthesis machinery from the nucleolus to the ribosome, inflammation, and expression of newly identified ectopic olfactory receptors (ORs) and taste receptors (TASRs) in the frontal cortex of typical cases of dementia with Lewy bodies (DLB) and cases with rapid clinical course (rpDLB: 2 years or less) compared with middle-aged non-affected individuals, in order to learn about the biochemical abnormalities underlying Lewy body pathology. METHODS: Real-time quantitative PCR, mitochondrial enzymatic assays, and analysis of ß-amyloid, tau, and synuclein species were used. RESULTS: The main alterations in DLB and rpDLB, which are more marked in the rapidly progressive forms, include (i) deregulated expression of several mRNAs and proteins of mitochondrial subunits, and reduced activity of complexes I, II, III, and IV of the mitochondrial respiratory chain; (ii) reduced expression of selected molecules involved in energy metabolism and increased expression of enzymes involved in purine metabolism; (iii) abnormal expression of nucleolar proteins, rRNA18S, genes encoding ribosomal proteins, and initiation factors of the transcription at the ribosome; (iv) discrete inflammation; and (v) marked deregulation of brain ORs and TASRs, respectively. Severe mitochondrial dysfunction involving activity of four complexes, minimal inflammatory responses, and dramatic altered expression of ORs and TASRs discriminate DLB from Alzheimer's disease. Altered solubility and aggregation of α-synuclein, increased ß-amyloid bound to membranes, and absence of soluble tau oligomers are common in DLB and rpDLB. Low levels of soluble ß-amyloid are found in DLB. However, increased soluble ß-amyloid 1-40 and ß-amyloid 1-42, and increased TNFα mRNA and protein expression, distinguish rpDLB. CONCLUSION: Molecular alterations in frontal cortex in DLB involve key biochemical pathways such as mitochondria and energy metabolism, protein synthesis, purine metabolism, among others and are accompanied by discrete innate inflammatory response.

SELECTION OF CITATIONS
SEARCH DETAIL
...