Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
2.
Chem Sci ; 15(16): 6151-6159, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38665533

ABSTRACT

Recently, planar and neutral tricoordinated oxygen embedded in graphene has been imaged experimentally (Nat. Commun., 2019, 10, 4570-4577). In this work, this unusual chemical species is studied utilizing a variety of state-of-the-art methods and combining periodic calculations with a fragmental approach. Several factors influencing the stability of trivalent oxygen are identified. A σ-donation and a π-backdonation mechanism between graphite and oxygen is established. π-Local aromaticity, with a delocalized 4c-2e bond involving the oxygen atom and the three nearest carbon atoms aids in the stabilization of this system. In addition, the framework in which the oxygen is embedded is crucial too to the stabilization, helping to delocalize the "extra" electron pair in the virtual orbitals. Based on the understanding gathered in this work, a set of organic molecules containing planar and neutral trivalent oxygen is theoretically proposed for the first time.

3.
Nat Commun ; 15(1): 1062, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38316774

ABSTRACT

The electronic structure defines the properties of graphene-based nanomaterials. Scanning tunneling microscopy/spectroscopy (STM/STS) experiments on graphene nanoribbons (GNRs), nanographenes, and nanoporous graphene (NPG) often determine an apparent electronic orbital confinement into the edges and nanopores, leading to dubious interpretations such as image potential states or super-atom molecular orbitals. We show that these measurements are subject to a wave function decay into the vacuum that masks the undisturbed electronic orbital shape. We use Au(111)-supported semiconducting gulf-type GNRs and NPGs as model systems fostering frontier orbitals that appear confined along the edges and nanopores in STS measurements. DFT calculations confirm that these states originate from valence and conduction bands. The deceptive electronic orbital confinement observed is caused by a loss of Fourier components, corresponding to states of high momentum. This effect can be generalized to other 1D and 2D carbon-based nanoarchitectures and is important for their use in catalysis and sensing applications.

4.
Nano Lett ; 24(1): 180-186, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38150551

ABSTRACT

We investigated the Kondo effect of cobalt(II)-5-15-bis(4'-bromophenyl)-10,20-bis(4'-iodophenyl)porphyrin (CoTPPBr2I2) molecules on Au(111) with low-temperature scanning tunneling microscopy under ultrahigh vacuum conditions. The molecules exhibit four adsorption configurations at the top and bridge sites of the surface with different molecular orientations. The Kondo resonance shows extraordinary sensitivity to the adsorption configuration. By switching the molecule between different configurations, the Kondo temperature is varied over a wide range from ≈8 up to ≈250 K. Density functional theory calculations reveal that changes of the adsorption configuration lead to distinct variations of the hybridization between the molecule and the surface. Furthermore, we show that surface reconstruction plays a significant role for the molecular Kondo effect.

5.
J Am Chem Soc ; 145(16): 8988-8995, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-36988648

ABSTRACT

Recent advances on surface-assisted synthesis have demonstrated that arrays of nanometer wide graphene nanoribbons can be laterally coupled with atomic precision to give rise to a highly anisotropic nanoporous graphene structure. Electronically, this graphene nanoarchitecture can be conceived as a set of weakly coupled semiconducting 1D nanochannels with electron propagation characterized by substantial interchannel quantum interferences. Here, we report the synthesis of a new nanoporous graphene structure where the interribbon electronic coupling can be controlled by the different degrees of freedom provided by phenylene bridges that couple the conducting channels. This versatility arises from the multiplicity of phenylene cross-coupling configurations, which provides a robust chemical knob, and from the interphenyl twist angle that acts as a fine-tunable knob. The twist angle is significantly altered by the interaction with the substrate, as confirmed by a combined bond-resolved scanning tunneling microscopy (STM) and ab initio analysis, and should accordingly be addressable by other external stimuli. Electron propagation simulations demonstrate the capability of either switching on/off or modulating the interribbon coupling by the corresponding use of the chemical or the conformational knob. Molecular bridges therefore emerge as efficient tools to engineer quantum transport and anisotropy in carbon-based 2D nanoarchitectures.

6.
ACS Nano ; 17(2): 1268-1274, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36440841

ABSTRACT

Spin-flip excitations of iron porphyrin molecules on Au(111) are investigated with a low-temperature scanning tunneling microscope. The molecules adopt two distinct adsorption configurations on the surface that exhibit different magnetic anisotropy energies. Density functional theory calculations show that the different structures and excitation energies reflect unlike occupations of the Fe 3d levels. We demonstrate that the magnetic anisotropy energy can be controlled by changing the adsorption site, the orientation, or the tip-molecule distance.

7.
ACS Nano ; 16(9): 14819-14826, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36037149

ABSTRACT

Spin-hosting graphene nanostructures are promising metal-free systems for elementary quantum spintronic devices. Conventionally, spins are protected from quenching by electronic band gaps, which also hinder electronic access to their quantum state. Here, we present a narrow graphene nanoribbon substitutionally doped with boron heteroatoms that combines a metallic character with the presence of localized spin 1/2 states in its interior. The ribbon was fabricated by on-surface synthesis on a Au(111) substrate. Transport measurements through ribbons suspended between the tip and the sample of a scanning tunneling microscope revealed their ballistic behavior, characteristic of metallic nanowires. Conductance spectra show fingerprints of localized spin states in the form of Kondo resonances and inelastic tunneling excitations. Density functional theory rationalizes the metallic character of the graphene nanoribbon due to the partial depopulation of the valence band induced by the boron atoms. The transferred charge builds localized magnetic moments around the boron atoms. The orthogonal symmetry of the spin-hosting state's and the valence band's wave functions protects them from mixing, maintaining the spin states localized. The combination of ballistic transport and spin localization into a single graphene nanoribbon offers the perspective of electronically addressing and controlling carbon spins in real device architectures.

8.
Sci Rep ; 12(1): 13032, 2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35906454

ABSTRACT

Recently, the edges of single-layer graphene have been experimentally doped with silicon atoms by means of scanning transmission electron microscopy. In this work, density functional theory is applied to model and characterize a wide range of experimentally inspired silicon doped zigzag-type graphene edges. The thermodynamic stability is assessed and the electronic and magnetic properties of the most relevant edge configurations are unveiled. Importantly, we show that silicon doping of graphene edges can induce a reversion of the spin orientation on the adjacent carbon atoms, leading to novel magnetic properties with possible applications in the field of spintronics.

10.
Nanomaterials (Basel) ; 11(12)2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34947652

ABSTRACT

Chiral graphene nanoribbons are extremely interesting structures due to their narrow band gaps and potential development of spin-polarized edge states. Here, we study their band structure on low work function silver surfaces. The use of a curved Ag single crystal provides, within the same sample, regions of disparate step structure and step density. Whereas the former leads to distinct azimuthal growth orientations of the graphene nanoribbons atop, the latter modulates the substrate's work function and thereby the interface energy level alignment. In turn, we disclose the associated charge transfer from the substrate to the ribbon and assess its effect on the nanoribbon's properties and the edge state magnetization.

11.
Nat Commun ; 12(1): 5538, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34545075

ABSTRACT

Precise control over the size and shape of graphene nanostructures allows engineering spin-polarized edge and topological states, representing a novel source of non-conventional π-magnetism with promising applications in quantum spintronics. A prerequisite for their emergence is the existence of robust gapped phases, which are difficult to find in extended graphene systems. Here we show that semi-metallic chiral GNRs (chGNRs) narrowed down to nanometer widths undergo a topological phase transition. We fabricated atomically precise chGNRs of different chirality and size by on surface synthesis using predesigned molecular precursors. Combining scanning tunneling microscopy (STM) measurements and theory simulations, we follow the evolution of topological properties and bulk band gap depending on the width, length, and chirality of chGNRs. Our findings represent a new platform for producing topologically protected spin states and demonstrate the potential of connecting chiral edge and defect structure with band engineering.

12.
J Phys Chem Lett ; 11(24): 10290-10297, 2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33226814

ABSTRACT

Graphene nanoribbons (GNRs) and their derivatives attract growing attention due to their excellent electronic and magnetic properties as well as the fine-tuning of such properties that can be obtained by heteroatom substitution and/or edge morphology modification. Here, we introduce graphene nanoribbon derivatives-organometallic hybrids with gold atoms incorporated between the carbon skeleton and side Cl atoms. We show that narrow chlorinated 5-AGNROHs (armchair graphene nanoribbon organometallic hybrids) can be fabricated by on-surface polymerization with omission of the cyclodehydrogenation reaction by a proper choice of tailored molecular precursors. Finally, we describe a route to exchange chlorine atoms connected through gold atoms to the carbon skeleton by hydrogen atom treatment. This is achieved directly on the surface, resulting in perfect unsubstituted hydrogen-terminated GNRs. This will be beneficial in the molecule on-surface processing when the preparation of final unsubstituted hydrocarbon structure is desired.

13.
Phys Rev Lett ; 125(14): 146801, 2020 Oct 02.
Article in English | MEDLINE | ID: mdl-33064521

ABSTRACT

Graphene nanoribbons (GNRs), low-dimensional platforms for carbon-based electronics, show the promising perspective to also incorporate spin polarization in their conjugated electron system. However, magnetism in GNRs is generally associated with localized states around zigzag edges, difficult to fabricate and with high reactivity. Here we demonstrate that magnetism can also be induced away from physical GNR zigzag edges through atomically precise engineering topological defects in its interior. A pair of substitutional boron atoms inserted in the carbon backbone breaks the conjugation of their topological bands and builds two spin-polarized boundary states around them. The spin state was detected in electrical transport measurements through boron-substituted GNRs suspended between the tip and the sample of a scanning tunneling microscope. First-principle simulations find that boron pairs induce a spin 1, which is modified by tuning the spacing between pairs. Our results demonstrate a route to embed spin chains in GNRs, turning them into basic elements of spintronic devices.

14.
ACS Nano ; 14(9): 11120-11129, 2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32804481

ABSTRACT

The on-surface synthesis of edge-functionalized graphene nanoribbons (GNRs) is challenged by the stability of the functional groups throughout the thermal reaction steps of the synthetic pathway. Edge fluorination is a particularly critical case in which the interaction with the catalytic substrate and intermediate products can induce the complete cleavage of the otherwise strong C-F bonds before the formation of the GNR. Here, we demonstrate how a rational design of the precursor can stabilize the functional group, enabling the synthesis of edge-fluorinated GNRs. The survival of the functionalization is demonstrated by tracking the structural and chemical transformations occurring at each reaction step with complementary X-ray photoelectron spectroscopy and scanning tunneling microscopy measurements. In contrast to previous attempts, we find that the C-F bond survives the cyclodehydrogenation of the intermediate polymers, leaving a thermal window where GNRs withhold more than 80% of the fluorine atoms. We attribute this enhanced stability of the C-F bond to the particular structure of our precursor, which prevents the cleavage of the C-F bond by avoiding interaction with the residual hydrogen originated in the cyclodehydrogenation. This structural protection of the linking bond could be implemented in the synthesis of other sp2-functionalized GNRs.

15.
ACS Nano ; 14(4): 3907-3916, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32073820

ABSTRACT

Molecular rotors have attracted considerable interest for their prospects in nanotechnology. However, their adsorption on supporting substrates, where they may be addressed individually, usually modifies their properties. Here, we investigate the switching of two closely related three-state rotors mounted on platforms on Au(111) using low-temperature scanning tunneling microscopy and density functional theory calculations. Being physisorbed, the platforms retain important gas-phase properties of the rotor. This simplifies a detailed analysis and permits, for instance, the identification of the vibrational modes involved in the rotation process. The symmetry provided by the platform enables active control of the rotation direction through electrostatic interactions with the tip and charged neighboring adsorbates. The present investigation of two model systems may turn out useful for designing platforms that provide directional rotation and for transferring more sophisticated molecular machines from the gas phase to surfaces.

16.
ACS Nano ; 14(2): 1895-1901, 2020 Feb 25.
Article in English | MEDLINE | ID: mdl-31999431

ABSTRACT

The electronic properties of graphene nanoribbons (GNRs) can be precisely tuned by chemical doping. Here we demonstrate that amino (NH2) functional groups attached at the edges of chiral GNRs (chGNRs) can efficiently gate the chGNRs and lead to the valence band (VB) depopulation on a metallic surface. The NH2-doped chGNRs are grown by on-surface synthesis on Au(111) using functionalized bianthracene precursors. Scanning tunneling spectroscopy resolves that the NH2 groups significantly upshift the bands of chGNRs, causing the Fermi level crossing of the VB onset of chGNRs. Through density functional theory simulations we confirm that the hole-doping behavior is due to an upward shift of the bands induced by the edge NH2 groups.

17.
Nat Commun ; 10(1): 1573, 2019 04 05.
Article in English | MEDLINE | ID: mdl-30952953

ABSTRACT

Miniaturization of electronic circuits into the single-atom level requires novel approaches to characterize transport properties. Due to its unrivaled precision, scanning probe microscopy is regarded as the method of choice for local characterization of atoms and single molecules supported on surfaces. Here we investigate electronic transport along the anisotropic germanium (001) surface with the use of two-probe scanning tunneling spectroscopy and first-principles transport calculations. We introduce a method for the determination of the transconductance in our two-probe experimental setup and demonstrate how it captures energy-resolved information about electronic transport through the unoccupied surface states. The sequential opening of two transport channels within the quasi-one-dimensional Ge dimer rows in the surface gives rise to two distinct resonances in the transconductance spectroscopic signal, consistent with phase-coherence lengths of up to 50 nm and anisotropic electron propagation. Our work paves the way for the electronic transport characterization of quantum circuits engineered on surfaces.

18.
J Phys Condens Matter ; 31(18): 18LT01, 2019 May 08.
Article in English | MEDLINE | ID: mdl-30721893

ABSTRACT

The conductances of molecules physisorbed to Au(1 1 1) via an extended [Formula: see text] system are probed with the tip of a low-temperature scanning tunneling microscope to maximize the control of the junction geometry. Inert hydrogen, methyl, and reactive propynyl subunits were attached to the platform and stand upright. Because of their different reactivities, either non-bonding (hydrogen and methyl) or bonding (propynyl) tip-molecule contacts are formed. The conductances exhibit little scatter between different experimental runs on different molecules, display distinct evolutions with the tip-subunit distance, and reach contact values of 0.003-0.05 G 0. For equal tip-platform distances the contact conductance of the inert methyl is close to that of the reactive propynyl. Under further compression, the inert species, hydrogen and methyl, are found to be better conductors. This shows that the current flow is not directly correlated with the chemical interaction. Atomistic calculations for the methyl case reproduce the conductance evolution and reveal the role of the junction geometry, forces and orbital symmetries at the tip-molecule interface. The current flow is controlled by orbital symmetries at the electrode interfaces rather than by the energy alignment of the molecular orbitals and electrode states. Functionalized molecular platforms thus open new ways to control and engineer electron conduction through metal-molecule interfaces at the atomic level.

19.
Chem Sci ; 10(43): 10143-10148, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-32055368

ABSTRACT

The synthesis of porous nanographenes is a challenging task for solution chemistry, and thus, on-surface synthesis provides an alternative approach. Here, we report the synthesis of a triporous nanographene with 102 sp2 carbon atoms by combining solution and surface chemistry. The carbon skeleton was obtained by Pd-catalyzed cyclotrimerization of arynes in solution, while planarization of the molecule was achieved through two hierarchically organized on-surface cyclodehydrogenation reactions, intra- and inter-blade. Remarkably, the three non-planar [14]annulene pores of this nanographene further evolved at higher temperatures showing interesting intra-porous on-surface reactivity.

20.
Nano Lett ; 19(1): 576-581, 2019 01 09.
Article in English | MEDLINE | ID: mdl-30539639

ABSTRACT

Electrons in graphene can show diffraction and interference phenomena fully analogous to light thanks to their Dirac-like energy dispersion. However, it is not clear how this optical analogy persists in nanostructured graphene, for example, with pores. Nanoporous graphene (NPG) consisting of linked graphene nanoribbons has recently been fabricated using molecular precursors and bottom-up assembly (Moreno et al. Science 2018, 360, 199). We predict that electrons propagating in NPG exhibit the interference Talbot effect, analogous to photons in coupled waveguides. Our results are obtained by parameter-free atomistic calculations of real-sized NPG samples based on seamlessly integrated density functional theory and tight-binding regions. We link the origins of this interference phenomenon to the band structure of the NPG. Most importantly, we demonstrate how the Talbot effect may be detected experimentally using dual-probe scanning tunneling microscopy. Talbot interference of electron waves in NPG or other related materials may open up new opportunities for future quantum electronics, computing, or sensing.

SELECTION OF CITATIONS
SEARCH DETAIL
...