Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Antioxidants (Basel) ; 13(2)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38397812

ABSTRACT

This study used a sonochemical synthesis method to prepare (La, Sm)-doped ZnO nanoparticles (NPs). The effect of incorporating these lanthanide elements on the structural, optical, and morphological properties of ZnO-NPs was analyzed. The cytotoxicity and the reactive oxygen species (ROS) generation capacity of ZnO-NPs were evaluated against breast (MCF7) and colon (HT29) cancer cell lines. Their antioxidant activity was analyzed using a DPPH assay, and their toxicity towards Artemia salina nauplii was also evaluated. The results revealed that treatment with NPs resulted in the death of 10.559-42.546% and 18.230-38.643% of MCF7 and HT29 cells, respectively. This effect was attributed to the ability of NPs to downregulate ROS formation within the two cell lines in a dose-dependent manner. In the DPPH assay, treatment with (La, Sm)-doped ZnO-NPs inhibited the generation of free radicals at IC50 values ranging from 3.898 to 126.948 µg/mL. Against A. salina nauplii, the synthesized NPs did not cause death nor induce morphological changes at the tested concentrations. A series of machine learning (ML) models were used to predict the biological performance of (La, Sm)-doped ZnO-NPs. Among the designed ML models, the gradient boosting model resulted in the greatest mean absolute error (MAE) (MAE 9.027, R2 = 0.86). The data generated in this work provide innovative insights into the influence of La and Sm on the structural arrangement and chemical features of ZnO-NPs, together with their cytotoxicity, antioxidant activity, and in vivo toxicity.

2.
J Food Sci ; 88(11): 4472-4482, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37799063

ABSTRACT

Tamales are a traditional dish rich in fat and carbohydrates with increasing popularity. The present study aimed to investigate the use of agave inulin powder (AIP) as a potential fat replacer in tamales. The effect of replacing 0%, 33%, 66%, and 100% (w/w) of fat with AIP was evaluated in the physicochemical, sensory, and nutritional features of tamales. The fat content of tamales decreased up to 88% in AIP tamales, whereas total dietary fiber (TDF) increased up to 14%. TDF in AIP tamales had a higher proportion of soluble dietary fiber (SDF). Moreover, results indicated that both insoluble and SDF were formed during the processing of tamales. Fat replacement led to a reduction of up to 26% in the calorie load of tamales. Fourier transform infrared spectroscopy analysis confirmed changes in the absorption bands related to carbohydrates, with increments in peaks associated with inulin (936 and 862 cm-1 ), and inhibition of retrogradation when inulin was included. AIP addition resulted in tamales with lighter color. Fat replacement with AIP affected the texture of tamales increasing their softness, adhesiveness, and cohesiveness. In general, inulin positively affected the hedonic attributes and acceptance of tamales. Interestingly, full-fat tamales had a lower glycemic index and presented higher contents of resistant starch compared to tamales with AIP. Nevertheless, agave inulin may serve as a fat replacer yielding reduced-fat tamales with higher TDF and SDF and yielding a lower calorie load without significantly affecting the sensory acceptability of this traditional meal.


Subject(s)
Agave , Fat Substitutes , Inulin/analysis , Fat Substitutes/analysis , Dietary Fiber/analysis , Glycemic Index
3.
Front Nutr ; 10: 1194283, 2023.
Article in English | MEDLINE | ID: mdl-37469550

ABSTRACT

Manilkara zapota "chicozapote" is an autochthonous evergreen tree from the Southern regions of Mexico, Belize, and Guatemala. Currently, it is widely distributed and extensively grown in Mexico and Southeast Asia. Traditionally, different structures of the plant have been used for medical purposes; seeds have diuretic and purgative properties, aiding in digestive complications and eliminating bladder and kidney stones. Tree bark has antidiarrheal, antipyretic, antibiotic, and astringent properties. Fruits and leaves have been used to treat cold, cough, diarrhea, indigestion, fever, hemorrhages, wounds, and ulcers. Chicozapote fruit is yellow and brown, with an oval shape and rough peel, it is an excellent source of nutrients, such as sugars, proteins, amino acids, and minerals, and is rich in phytochemical components, such as flavonoids, phenolic acids, and tannins. These bioactive compounds exert several biological activities, i.e., as an antioxidant, antidiabetic, antimicrobial, anti-inflammatory, cytotoxic, and anti-arthritic agents, to name a few. These beneficial properties assist in preventing chronic and degenerative diseases, such as cancer, diabetes, neurological, infectious, and cardiovascular diseases. The use of chicozapote is still limited to its fresh form, and its non-edible structures produce a lot of waste. Therefore, an alternative valorizing and preserving strategy is to use the fruit as a raw source to design functional foods and pharmacological products. Here, the nutritional and phytochemical profiles and the current view regarding methodologies and conditions, for the extraction and characterization of its bioactive compounds, are described, and focus is placed on their multiple biological effects and specific functional mechanisms.

4.
Front Microbiol ; 13: 969460, 2022.
Article in English | MEDLINE | ID: mdl-36187981

ABSTRACT

Sourdough (SD) fermentation is a traditional biotechnological process used to improve the properties of baked goods. Nowadays, SD fermentation is studied for its potential health effects due to the presence of postbiotic-like components, which refer to a group of inanimate microorganisms and/or their components that confer health benefits on the host. Some postbiotic-like components reported in SD are non-viable microorganisms, short-chain fatty acids, bacteriocins, biosurfactants, secreted proteins/peptides, amino acids, flavonoids, exopolysaccharides, and other molecules. Temperature, pH, fermentation time, and the composition of lactic acid bacteria and yeasts in SD can impact the nutritional and sensory properties of bread and the postbiotic-like effect. Many in vivo studies in humans have associated the consumption of SD bread with higher satiety, lower glycemic responses, increased postprandial concentrations of short-chain fatty acids, and improvement in the symptoms of metabolic or gastrointestinal-related diseases. This review highlights the role of bacteria and yeasts used for SD, the formation of postbiotic-like components affected by SD fermentation and the baking process, and the implications of functional SD bread intake for human health. There are few studies characterizing the stability and properties of postbiotic-like components after the baking process. Therefore, further research is necessary to develop SD bread with postbiotic-related health benefits.

5.
Antioxidants (Basel) ; 11(6)2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35740089

ABSTRACT

Raspberries (Rubus idaeus) possess a wide phenolic family profile; this serves the role of self-protection for the plant. Interest in these compounds have significantly increased, since they have been classified as nutraceuticals due to the positive health effects provided to consumers. Extensive chemical, in vitro and in vivo studies have been performed to prove and validate these benefits and their possible applications as an aid when treating several chronic degenerative diseases, characterized by oxidative stress and an inflammatory response. While many diseases could be co-adjuvanted by the intake of these phenolic compounds, this review will mainly discuss their effects on cancer. Anthocyanins and ellagitannins are known to provide a major antioxidant capacity in raspberries. The aim of this review is to summarize the current knowledge concerning the phenolic compound family of raspberries, and topics discussed include their characterization, biosynthesis, bioavailability, cytotoxicity, antioxidant and anti-inflammatory activities.

6.
Food Chem ; 372: 131232, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34634586

ABSTRACT

Frog farming systems do not take advantage of their byproducts, which represents health risks and environmental pollution. The present study aimed to evaluate the proximate composition, amino acid, and fatty acid profile of American Bullfrog byproducts (whole frogs (WF), legs (LF), and skin (SF)) and their technological functionality. Results showed that WF, LF, and SF protein content was 47.6, 88.4, and 91.1% dry base (d.b.), correspondingly. Fat content resulted in 34.6, 3.2, and 4.2% (d.b.), respectively. Moreover, byproducts contain all the essential amino acids (23.8-46.6%), and the unsaturated fatty acids predominated the saturated fats. Samples showed water and oil absorption capacities of 1.8-2.6% and 1.8-4.0%, respectively, while oil and water emulsion capacities were 76.7-98.3% and 36.1-85.6%, correspondingly. Additionally, SF presented a gelling capacity in a 5% concentration. These results showed that frogs' byproducts have adequate nutritional and functional capacities, compared to other vegetable and animal flours used in the industry.


Subject(s)
Food Ingredients , Animals , Fatty Acids , Rana catesbeiana , Skin , United States
7.
Foods ; 10(10)2021 Sep 26.
Article in English | MEDLINE | ID: mdl-34681324

ABSTRACT

Isolation and functional characterization of microorganisms are relevant steps for generating starter cultures with functional properties, and more recently, those related to improving mental health. Milk kefir grains have been recently investigated as a source of health-related strains. This study focused on the evaluation of microorganisms from artisanal Mexican milk kefir grains regarding probiotic properties, in vitro fermentability with commercial prebiotics (lactulose, inulin, and citrus pectin), and γ-aminobutyric acid (GABA)-producing capacity. Microorganisms were identified belonging to genera Lactococcus, Lactobacillus, Leuconostoc, and Kluyveromyces. The probiotic properties were assessed by aggregation abilities, antimicrobial activity, antibiotic susceptibility, and resistance to in vitro gastrointestinal digestion, showing a good performance compared with commercial probiotics. Most of isolates maintained a concentration above 6 log colony forming units/mL after the intestinal phase. Specific isolates of Kluyveromyces (BIOTEC009 and BIOTEC010), Leuconostoc (BIOTEC011 and BIOTEC012), and Lactobacillus (BIOTEC014 and BIOTEC15) showed a high fermentability in media supplemented with commercial prebiotics. The capacity to produce GABA was classified as medium for L. lactis BIOTEC006, BIOTEC007, and BIOTEC008; K. lactis BIOTEC009; L. pseudomesenteroides BIOTEC012; and L. kefiri BIOTEC014, and comparable to that obtained for commercial probiotics. Finally, a multivariate approach was performed, allowing the grouping of 2-5 clusters of microorganisms that could be further considered new promising cultures for functional dairy food applications.

8.
Food Res Int ; 142: 110208, 2021 04.
Article in English | MEDLINE | ID: mdl-33773683

ABSTRACT

Diabetes mellitus type 2 (T2DM) is associated with hyperglycemia, insulin resistance, and gut dysbiosis. Probiotics and prebiotics can ameliorate T2DM through different mechanisms of action, such as reducing oxidative stress, or the inhibition of pro-inflammatory markers, among others. Multiple studies in vitro and in vivo have demonstrated the reduction of hyperglycemia, depressive behaviors, obesity, oxidative stress, and insulin resistance in diabetic patients through the consumption of dairy products, such as yogurt, fermented milk, and cheese, enriched with potential probiotic strains, prebiotic ingredients, and synbiotics (understood as a combination of both). Therefore, this review aims to provide an updated overview about the impact of dairy foods with probiotics, prebiotics, or synbiotics to prevent and manage T2DM, the mechanism of action related to the host health, and the future tendencies for developing new dairy foods. Despite the addition of probiotics, prebiotics, and synbiotics to dairy products could be highly beneficial, more evidence, especially from clinical trials, is needed to develop evidence-based T2DM prevention guidelines.


Subject(s)
Diabetes Mellitus, Type 2 , Probiotics , Synbiotics , Diabetes Mellitus, Type 2/prevention & control , Dysbiosis/prevention & control , Humans , Prebiotics
9.
Nutrients ; 12(12)2020 Dec 19.
Article in English | MEDLINE | ID: mdl-33352789

ABSTRACT

The gut-brain-microbiota axis consists of a bilateral communication system that enables gut microbes to interact with the brain, and the latter with the gut. Gut bacteria influence behavior, and both depression and anxiety symptoms are directly associated with alterations in the microbiota. Psychobiotics are defined as probiotics that confer mental health benefits to the host when ingested in a particular quantity through interaction with commensal gut bacteria. The action mechanisms by which bacteria exert their psychobiotic potential has not been completely elucidated. However, it has been found that these bacteria provide their benefits mostly through the hypothalamic-pituitary-adrenal (HPA) axis, the immune response and inflammation, and through the production of neurohormones and neurotransmitters. This review aims to explore the different approaches to evaluate the psychobiotic potential of several bacterial strains and fermented products. The reviewed literature suggests that the consumption of psychobiotics could be considered as a viable option to both look after and restore mental health, without undesired secondary effects, and presenting a lower risk of allergies and less dependence compared to psychotropic drugs.


Subject(s)
Brain/microbiology , Gastrointestinal Microbiome/drug effects , Probiotics/pharmacology , Psychotropic Drugs/pharmacology , Humans , Hypothalamo-Hypophyseal System/microbiology , Pituitary-Adrenal System/microbiology
10.
Molecules ; 24(4)2019 Feb 15.
Article in English | MEDLINE | ID: mdl-30769960

ABSTRACT

Fruit by-products are being investigated as non-conventional alternative sources of dietary fiber (DF). High hydrostatic pressure (HHP) treatments have been used to modify DF content as well as its technological and physiological functionality. Orange, mango and prickly pear peels untreated (OU, MU and PPU) and HHP-treated at 600 MPa (OP/55 °C and 20 min, MP/22 °C and 10 min, PPP/55 °C and 10 min) were evaluated. Untreated and treated fruit peels were subjected to fecal in vitro fermentations. The neutral sugar composition and linkage glycosidic positions were related to the production of short chain fatty acids (SCFA) resulting from the fermentation of the materials. After HHP-treatments, changes from multibranched sugars to linear sugars were observed. After 24 h of fermentation, OP yielded the highest amount of SCFA followed by PPU and MP (389.4, 282.0 and 204.6 µmol/10 mg DF, respectively). HHP treatment increased the SCFA concentration of orange and mango peel by 7 and 10.3% respectively, compared with the untreated samples after 24 h of fermentation. The results presented herein suggest that fruit peels could be used as good fermentable fiber sources, because they yielded high amounts of SCFA during in vitro fermentations.


Subject(s)
Dietary Fiber/metabolism , Feces/microbiology , Fermentation , Fruit/chemistry , Pressure , Dietary Fiber/analysis , Fatty Acids, Volatile/analysis , Fatty Acids, Volatile/biosynthesis , Hydrogen-Ion Concentration , Hydrostatic Pressure , Phytochemicals/chemistry
11.
Food Sci Technol Int ; 23(5): 396-402, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28675969

ABSTRACT

The effect of high hydrostatic pressure (HHP) and temperature on composition of non-conventional dietary fiber (DF) sources and functional properties were evaluated. Mango, orange, or prickly pear peels were processed at 600 MPa during 10 min at 22 ℃ and 55 ℃. Total (TDF), soluble (SDF), and insoluble (IDF) dietary fiber, water/oil holding, and retention capacity, solubility, swelling capacity, and bulk density were assayed. An increment in the SDF content was observed due to the effect of pressure with the greatest changes noticed in mango peel, increasing from 37.4% (control) to 45.7% (SDF/TDF) in the HHP-treated (55 ℃) sample. Constant values of TDF after the treatments suggest a conversion of IDF to SDF in mango (38.9%-40.5% dw) and orange (49.0%-50.8% dw) peels. The highest fiber solubility values were observed for mango peel ranging between 80.3% and 83.9%, but the highest increase, from 55.1% to 62.3%, due to treatment was displayed in orange peel processed at 22 ℃. A relationship between DF modifications induced by HHP treatment and changes in the functional properties of the materials was established. Application of HHP opens up the opportunity to modify non-conventional sources of DF and to obtain novel functional properties for different food applications.


Subject(s)
Dietary Fiber/analysis , Food Handling/methods , Fruit/chemistry , Hydrostatic Pressure , Citrus sinensis/chemistry , Mangifera/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...