Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
J Immunol Res ; 2024: 9313267, 2024.
Article in English | MEDLINE | ID: mdl-38939745

ABSTRACT

Vaccination is one of the most effective prophylactic public health interventions for the prevention of infectious diseases such as coronavirus disease (COVID-19). Considering the ongoing need for new COVID-19 vaccines, it is crucial to modify our approach and incorporate more conserved regions of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to effectively address emerging viral variants. The nucleocapsid protein is a structural protein of SARS-CoV-2 that is involved in replication and immune responses. Furthermore, this protein offers significant advantages owing to the minimal accumulation of mutations over time and the inclusion of key T-cell epitopes critical for SARS-CoV-2 immunity. A novel strategy that may be suitable for the new generation of vaccines against COVID-19 is to use a combination of antigens, including the spike and nucleocapsid proteins, to elicit robust humoral and potent cellular immune responses, along with long-lasting immunity. The strategic use of multiple antigens aims to enhance vaccine efficacy and broaden protection against viruses, including their variants. The immune response against the nucleocapsid protein from other coronavirus is long-lasting, and it can persist up to 11 years post-infection. Thus, the incorporation of nucleocapsids (N) into vaccine design adds an important dimension to vaccination efforts and holds promise for bolstering the ability to combat COVID-19 effectively. In this review, we summarize the preclinical studies that evaluated the use of the nucleocapsid protein as antigen. This study discusses the use of nucleocapsid alone and its combination with spike protein or other proteins of SARS-CoV-2.


Subject(s)
COVID-19 Vaccines , COVID-19 , Coronavirus Nucleocapsid Proteins , SARS-CoV-2 , Humans , COVID-19 Vaccines/immunology , SARS-CoV-2/immunology , COVID-19/prevention & control , COVID-19/immunology , Coronavirus Nucleocapsid Proteins/immunology , Coronavirus Nucleocapsid Proteins/genetics , Immunogenicity, Vaccine , Animals , Phosphoproteins/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Epitopes, T-Lymphocyte/immunology , Antibodies, Viral/immunology , Nucleocapsid Proteins/immunology
2.
Viruses ; 16(3)2024 02 23.
Article in English | MEDLINE | ID: mdl-38543711

ABSTRACT

Viruses have a wide repertoire of molecular strategies that focus on their replication or the facilitation of different stages of the viral cycle. One of these strategies is mediated by the activity of viroporins, which are multifunctional viral proteins that, upon oligomerization, exhibit ion channel properties with mild ion selectivity. Viroporins facilitate multiple processes, such as the regulation of immune response and inflammasome activation through the induction of pore formation in various cell organelle membranes to facilitate the escape of ions and the alteration of intracellular homeostasis. Viroporins target diverse membranes (such as the cellular membrane), endoplasmic reticulum, and mitochondria. Cumulative data regarding the importance of mitochondria function in multiple processes, such as cellular metabolism, energy production, calcium homeostasis, apoptosis, and mitophagy, have been reported. The direct or indirect interaction of viroporins with mitochondria and how this interaction affects the functioning of mitochondrial cells in the innate immunity of host cells against viruses remains unclear. A better understanding of the viroporin-mitochondria interactions will provide insights into their role in affecting host immune signaling through the mitochondria. Thus, in this review, we mainly focus on descriptions of viroporins and studies that have provided insights into the role of viroporins in hijacked mitochondria.


Subject(s)
Viroporin Proteins , Viruses , Viroporin Proteins/metabolism , Viral Proteins/metabolism , Ion Channels/metabolism , Immunity, Innate
3.
Microorganisms ; 11(7)2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37513023

ABSTRACT

Once regarded as inert organelles with limited and ill-defined roles, lipid droplets (LDs) have emerged as dynamic entities with multifaceted functions within the cell. Recent research has illuminated their pivotal role as primary energy reservoirs in the form of lipids, capable of being metabolized to meet cellular energy demands. Their high dynamism is underscored by their ability to interact with numerous cellular organelles, notably the endoplasmic reticulum (the site of LD genesis) and mitochondria, which utilize small LDs for energy production. Beyond their contribution to cellular bioenergetics, LDs have been associated with viral infections. Evidence suggests that viruses can co-opt LDs to facilitate their infection cycle. Furthermore, recent discoveries highlight the role of LDs in modulating the host's immune response. Observations of altered LD levels during viral infections suggest their involvement in disease pathophysiology, potentially through production of proinflammatory mediators using LD lipids as precursors. This review explores these intriguing aspects of LDs, shedding light on their multifaceted nature and implications in viral interactions and disease development.

4.
Vaccines (Basel) ; 11(4)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37112776

ABSTRACT

Despite all successful efforts to develop a COVID-19 vaccine, the need to evaluate alternative antigens to produce next-generation vaccines is imperative to target emerging variants. Thus, the second generation of COVID-19 vaccines employ more than one antigen from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to induce an effective and lasting immune response. Here, we analyzed the combination of two SARS-CoV-2 viral antigens that could elicit a more durable immune response in both T- and B-cells. The nucleocapsid (N) protein, Spike protein S1 domain, and receptor binding domain (RBD) of the SARS-CoV-2 spike surface glycoproteins were expressed and purified in a mammalian expression system, taking into consideration the posttranscriptional modifications and structural characteristics. The immunogenicity of these combined proteins was evaluated in a murine model. Immunization combining S1 or RBD with the N protein induced higher levels of IgG antibodies, increased the percentage of neutralization, and elevated the production of cytokines TNF-α, IFN-γ, and IL-2 compared to the administration of a single antigen. Furthermore, sera from immunized mice recognized alpha and beta variants of SARS-CoV-2, which supports ongoing clinical results on partial protection in vaccinated populations, despite mutations. This study identifies potential antigens for second-generation COVID-19 vaccines.

6.
Front Cell Infect Microbiol ; 12: 890750, 2022.
Article in English | MEDLINE | ID: mdl-35800385

ABSTRACT

Dengue and Zika viruses cocirculate annually in endemic areas of Mexico, causing outbreaks of different magnitude and severity every year, suggesting a continuous selection of Flavivirus variants with variable phenotypes of transmissibility and virulence. To evaluate if Flavivirus variants with different phenotypes cocirculate during outbreaks, we isolated dengue and Zika viruses from blood samples of febrile patients from Oaxaca City during the 2016 and 2019 epidemic years. We compared their replication kinetics in human cells, susceptibility to type I interferon antiviral response, and the accumulation of subgenomic RNA on infected cells. We observed correlations between type I interferon susceptibility and subgenomic RNA accumulation, with high hematocrit percentage and thrombocytopenia. Our results suggest that Flaviviruses that cocirculate in Oaxaca, Mexico, have variable sensitivity to the antiviral activity of type I interferons, and this phenotypic trait correlates with the severity of the disease.


Subject(s)
Dengue , Flavivirus , Interferon Type I , Zika Virus Infection , Zika Virus , Antiviral Agents , Flavivirus/genetics , Humans , Mexico/epidemiology , RNA, Viral/genetics , Severity of Illness Index , Virus Replication , Zika Virus/genetics
7.
J Leukoc Biol ; 111(6): 1147-1158, 2022 06.
Article in English | MEDLINE | ID: mdl-34826347

ABSTRACT

Severe coronavirus disease 2019 (COVID-19) is characterized by lung injury, cytokine storm, and increased neutrophil-to-lymphocyte ratio (NLR). Current therapies focus on reducing viral replication and inflammatory responses, but no specific treatment exists to prevent the development of severe COVID-19 in infected individuals. Angiotensin-converting enzyme-2 (ACE2) is the receptor for SARS-CoV-2, the virus causing COVID-19, but it is also critical for maintaining the correct functionality of lung epithelium and endothelium. Coronaviruses induce activation of a disintegrin and metalloprotease 17 (ADAM17) and shedding of ACE2 from the cell surface resulting in exacerbated inflammatory responses. Thus, we hypothesized that ADAM17 inhibition ameliorates COVID-19-related lung inflammation. We employed a preclinical mouse model using intratracheal instillation of a combination of polyinosinic:polycytidylic acid (poly(I:C)) and the receptor-binding domain of the SARS-CoV-2 spike protein (RBD-S) to mimic lung damage associated with COVID-19. Histologic analysis of inflamed mice confirmed the expected signs of lung injury including edema, fibrosis, vascular congestion, and leukocyte infiltration. Moreover, inflamed mice also showed an increased NLR as observed in critically ill COVID-19 patients. Administration of the ADAM17/MMP inhibitors apratastat and TMI-1 significantly improved lung histology and prevented leukocyte infiltration. Reduced leukocyte recruitment could be explained by reduced production of proinflammatory cytokines and lower levels of the endothelial adhesion molecules ICAM-1 and VCAM-1. Additionally, the NLR was significantly reduced by ADAM17/MMP inhibition. Thus, we propose inhibition of ADAM17/MMP as a novel promising treatment strategy in SARS-CoV-2-infected individuals to prevent the progression toward severe COVID-19.


Subject(s)
COVID-19 Drug Treatment , Lung Injury , ADAM17 Protein , Angiotensin-Converting Enzyme 2 , Animals , Disease Models, Animal , Humans , Lung Injury/etiology , Lung Injury/prevention & control , Matrix Metalloproteinases , Mice , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
8.
Diagnostics (Basel) ; 11(10)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34679506

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has reached an unprecedented level. There is a strong demand for diagnostic and serological supplies worldwide, making it necessary for countries to establish their own technologies to produce high-quality biomolecules. The two main viral antigens used for the diagnostics for severe acute respiratory syndrome coronavirus (SARS-CoV-2) are the structural proteins spike (S) protein and nucleocapsid (N) protein. The spike protein of SARS-CoV-2 is cleaved into S1 and S2, in which the S1 subunit has the receptor-binding domain (RBD), which induces the production of neutralizing antibodies, whereas nucleocapsid is an ideal target for viral antigen-based detection. In this study, we designed plasmids, pcDNA3.1/S1 and pcDNA3.1/N, and optimized their expression of the recombinant S1 and N proteins from SARS-CoV-2 in a mammalian system. The RBD was used as a control. The antigens were successfully purified from Expi293 cells, with high yields of the S1, N, and RBD proteins. The immunogenic abilities of these proteins were demonstrated in a mouse model. Further, enzyme-linked immunosorbent assays with human serum samples showed that the SARS-CoV-2 antigens are a suitable alternative for serological assays to identify patients infected with COVID-19.

9.
Front Cell Dev Biol ; 9: 625719, 2021.
Article in English | MEDLINE | ID: mdl-34012961

ABSTRACT

The intestinal epithelial barrier (IEB) depends on stable interepithelial protein complexes such as tight junctions (TJ), adherens junctions (AJ), and the actin cytoskeleton. During inflammation, the IEB is compromised due to TJ protein internalization and actin remodeling. An important actin regulator is the actin-related protein 2/3 (Arp2/3) complex, which induces actin branching. Activation of Arp2/3 by nucleation-promoting factors is required for the formation of epithelial monolayers, but little is known about the relevance of Arp2/3 inhibition and endogenous Arp2/3 inhibitory proteins for IEB regulation. We found that the recently identified Arp2/3 inhibitory protein arpin was strongly expressed in intestinal epithelial cells. Arpin expression decreased in response to tumor necrosis factor (TNF)α and interferon (IFN)γ treatment, whereas the expression of gadkin and protein interacting with protein C-kinase α-subunit 1 (PICK1), other Arp2/3 inhibitors, remained unchanged. Of note, arpin coprecipitated with the TJ proteins occludin and claudin-1 and the AJ protein E-cadherin. Arpin depletion altered the architecture of both AJ and TJ, increased actin filament content and actomyosin contractility, and significantly increased epithelial permeability, demonstrating that arpin is indeed required for maintaining IEB integrity. During experimental colitis in mice, arpin expression was also decreased. Analyzing colon tissues from ulcerative colitis patients by Western blot, we found different arpin levels with overall no significant changes. However, in acutely inflamed areas, arpin was significantly reduced compared to non-inflamed areas. Importantly, patients receiving mesalazine had significantly higher arpin levels than untreated patients. As arpin depletion (theoretically meaning more active Arp2/3) increased permeability, we wanted to know whether Arp2/3 inhibition would show the opposite. Indeed, the specific Arp2/3 inhibitor CK666 ameliorated TNFα/IFNγ-induced permeability in established Caco-2 monolayers by preventing TJ disruption. CK666 treatment also attenuated colitis development, colon tissue damage, TJ disruption, and permeability in dextran sulphate sodium (DSS)-treated mice. Our results demonstrate that loss of arpin triggers IEB dysfunction during inflammation and that low arpin levels can be considered a novel hallmark of acute inflammation.

10.
J Immunol Res ; 2021: 5511841, 2021.
Article in English | MEDLINE | ID: mdl-33997054

ABSTRACT

Dengue is a worldwide expanding threat caused by dengue virus (DENV) infection. To date, no specific treatment or effective vaccine is available. Antibodies produced by plasma cells (PCs) might be involved concomitantly in protection and severe dengue immunopathology. Although a massive appearance of PCs has been reported during acute DENV infection in humans, this response has been poorly characterized. Here, we show the dynamic of PC generation in immune-competent mice cutaneously inoculated with DENV compared with two control experimental groups: mice inoculated with inactivated DENV or with PBS. We found that PC numbers increased significantly in the skin-draining lymph node (DLN), peaking at day 10 and abruptly decreasing by day 14 after DENV inoculation. Class-switched IgG+ PCs appeared from day 7 and dominated the response, while in contrast, the frequency of IgM+ PCs decreased from day 7 onwards. Even though the kinetic of the response was similar between DENV- and iDENV-inoculated mice, the intensity of the response was significantly different. Interestingly, we demonstrated a similar PC response to virus antigens (E and prM) by ELISPOT. In situ characterization showed that PCs were distributed in the medullary cords and in close proximity to germinal centers (GCs), suggesting both an extrafollicular and a GC origin. Proliferating PCs (Ki-67+) were found as early as 3-day postinoculation, and in-depth analysis showed that these PCs were in active phases of cell cycle during the kinetic. Finally, we found a progressive appearance of high-affinity neutralizing DENV-specific IgG further supporting GC involvement. Of note, these antibodies seem to be highly cross-reactive, as a large proportion recognizes Zika virus (ZIKV). The strong PC response to skin-inoculated DENV in this work resembles the findings already described in humans. We consider that this study contributes to the understanding of the in vivo biology of the humoral immune response to DENV in an immunocompetent murine model.


Subject(s)
Dengue Virus/immunology , Dengue/immunology , Plasma Cells/immunology , Animals , Antibodies, Neutralizing/analysis , Antibodies, Neutralizing/metabolism , Antibodies, Viral/analysis , Antibodies, Viral/metabolism , Cross Reactions , Dengue/pathology , Dengue/virology , Disease Models, Animal , Germinal Center/cytology , Germinal Center/immunology , Germinal Center/metabolism , Humans , Male , Mice , Plasma Cells/metabolism , Skin/immunology , Skin/pathology , Skin/virology , Specific Pathogen-Free Organisms , Zika Virus/immunology
11.
Arch Virol ; 166(4): 1177-1182, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33580381

ABSTRACT

Respiratory syncytial virus (RSV) is most commonly associated with upper respiratory tract infections during childhood. The lipid composition of cells and lipogenic enzymes play an important role in RSV infection. There are controversial data about whether lipid biosynthesis regulators such as AMP-activated protein kinase (AMPK) are deregulated by RSV. Hence, we examined whether the activation state of AMPK is altered in RSV-infected HEp-2 cells. Our data show that RSV infection inhibits AMPK activity, favoring the activation of downstream lipogenic effectors and cellular lipid anabolism in HEp-2 cells.


Subject(s)
AMP-Activated Protein Kinases/antagonists & inhibitors , Lipid Metabolism , Respiratory Syncytial Virus Infections/metabolism , Respiratory Syncytial Virus, Human/physiology , AMP-Activated Protein Kinases/metabolism , Cell Line, Tumor , Humans , Proto-Oncogene Proteins c-akt/metabolism , Virus Replication
12.
Front Immunol ; 11: 538240, 2020.
Article in English | MEDLINE | ID: mdl-33193307

ABSTRACT

Dengue virus infection (DENV-2) is transmitted by infected mosquitoes via the skin, where many dermal and epidermal cells are potentially susceptible to infection. Most of the cells in an area of infection will establish an antiviral microenvironment to control viral replication. Although cumulative studies report permissive DENV-2 infection in dendritic cells, keratinocytes, and fibroblasts, among other cells also infected, little information is available regarding cell-to-cell crosstalk and the effect of this on the outcome of the infection. Therefore, our study focused on understanding the contribution of fibroblast and dendritic cell crosstalk to the control or promotion of dengue. Our results suggest that dendritic cells promote an antiviral state over fibroblasts by enhancing the production of type I interferon, but not proinflammatory cytokines. Infected and non-infected fibroblasts promoted partial dendritic cell maturation, and the fibroblast-matured cells were less permissive to infection and showed enhanced type I interferon production. We also observed that the soluble mediators produced by non-infected or Poly (I:C) transfected fibroblasts induced allogenic T cell proliferation, but mediators produced by DENV-2 infected fibroblasts inhibited this phenomenon. Additionally, the effects of fibroblast soluble mediators on CD14+ monocytes were analyzed to assess whether they affected the differentiation of monocyte derived dendritic cells (moDC). Our data showed that mediators produced by infected fibroblasts induced variable levels of monocyte differentiation into dendritic cells, even in the presence of recombinant GM-CSF and IL-4. Cells with dendritic cell-like morphology appeared in the culture; however, flow cytometry analysis showed that the mediators did not fully downregulate CD14 nor did they upregulate CD1a. Our data revealed that fibroblast-dendritic cell crosstalk promoted an antiviral response mediated manly by type I interferons over fibroblasts. Furthermore, the maturation of dendritic cells and T cell proliferation were promoted, which was inhibited by DENV-2-induced mediators. Together, our results suggest that activation of the adaptive immune response is influenced by the crosstalk of skin resident cells and the intensity of innate immune responses established in the microenvironment of the infected skin.


Subject(s)
Cell Communication/immunology , Dendritic Cells/immunology , Dengue Virus/immunology , Dengue/immunology , Dermis/immunology , Fibroblasts/immunology , Adult , Antigens, CD1/immunology , Dendritic Cells/pathology , Dendritic Cells/virology , Dengue/pathology , Dermis/pathology , Dermis/virology , Female , Fibroblasts/pathology , Fibroblasts/virology , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Humans , Interferon Type I/immunology , Interleukin-4/immunology , Lipopolysaccharide Receptors/immunology , Male , Middle Aged
13.
Virol Sin ; 35(5): 575-587, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32314276

ABSTRACT

Dengue is a global health problem without current specific treatment nor safe vaccines available. While severe dengue is related to pre-existing non-neutralizing dengue virus (DENV) antibodies, the role of T cells in protection or pathology is unclear. Using cutaneous DENV infection in immunocompetent mice we previously showed the generation of PNA+ germinal centers (GCs), now we assessed the activation and proliferation of B and T cells in draining lymph nodes (DLNs). We found a drastic remodelling of DLN compartments from 7 to 14 days post-infection (dpi) with greatly enlarged B cell follicles, occupying almost half of the DLN area compared to ~24% in naïve conditions. Enormous clusters of proliferating (Ki-67+) cells inside B follicles were found 14 dpi, representing ~33% of B cells in DLNs but only ~2% in non-infected mice. Inside GCs, we noticed an important recruitment of tingle body macrophages removing apoptotic cells. In contrast, the percentage of paracortex area and total T cells decreased by 14-16 dpi, compared to controls. Scattered randomly distributed Ki-67+ T cells were found, similar to non-infected mice. CD69 expression by CD4+ and CD8+ T cells was minor, while it was remarkable in B cells, representing 1764.7% of change from basal levels 3 dpi. The apparent lack of T cell responses cannot be attributed to apoptosis since no significant differences were observed compared to non-infected mice. This study shows massive B cell activation and proliferation in DLNs upon DENV infection. In contrast, we found very poor, almost absent CD4+ and CD8+ T cell responses.


Subject(s)
Dengue Virus , Dengue , Animals , B-Lymphocytes , CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte , Mice
14.
Front Immunol ; 11: 352, 2020.
Article in English | MEDLINE | ID: mdl-32210961

ABSTRACT

Dengue is the most prevalent and rapidly transmitted mosquito-borne viral disease of humans. One of the fundamental innate immune responses to viral infections includes the processing and release of pro-inflammatory cytokines such as interleukin (IL-1ß and IL-18) through the activation of inflammasome. Dengue virus stimulates the Nod-like receptor (NLRP3-specific inflammasome), however, the specific mechanism(s) by which dengue virus activates the NLRP3 inflammasome is unknown. In this study, we investigated the activation of the NLRP3 inflammasome in endothelial cells (HMEC-1) following dengue virus infection. Our results showed that dengue infection as well as the NS2A and NS2B protein expression increase the NLRP3 inflammasome activation, and further apoptosis-associated speck-like protein containing caspase recruitment domain (ASC) oligomerization, and IL-1ß secretion through caspase-1 activation. Specifically, we have demonstrated that NS2A and NS2B, two proteins of dengue virus that behave as putative viroporins, were sufficient to stimulate the NLRP3 inflammasome complex in lipopolysaccharide (LPS)-primed endothelial cells. In summary, our observations provide insight into the dengue-induced inflammatory response mechanism and highlight the importance of DENV-2 NS2A and NS2B proteins in activation of the NLRP3 inflammasome during dengue virus infection.


Subject(s)
Dengue Virus/immunology , Dengue/immunology , Endothelial Cells/physiology , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Viral Nonstructural Proteins/metabolism , Viroporin Proteins/metabolism , CARD Signaling Adaptor Proteins/metabolism , Caspase 1/metabolism , Cell Line, Transformed , Dengue/virology , Dengue Virus/pathogenicity , Humans , Immunity, Innate , Interleukin-1beta/metabolism , Viral Nonstructural Proteins/genetics , Viroporin Proteins/genetics , Virulence
15.
Acta Trop ; 201: 105201, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31562846

ABSTRACT

Zika virus (ZIKV) is a mosquito-borne flavivirus that has caused recent large outbreaks in the Americas. Given its association with severe congenital defects including microcephaly, distinguishing infections caused by ZIKV from those caused by dengue virus (DENV) is of primordial importance. The objectives of this study were to evaluate the recombinant proteins rEIII-ZIKV (Envelope protein domain III) and rNS1ß-leader-ZIKV (non-structural protein 1) for the serological diagnosis of ZIKV in the Mexican population. We also evaluated potential cross-reactivity in commercial enzyme-linked immunosorbent assays (ELISA) based on the ZIKV NS1 and DENV NS1 proteins. rEIII-ZIKV and rNS1ß-leader-ZIKV proteins were tested with sera from 30 PCR-confirmed ZIKV cases, 50 ZIKV-naive, DENV-exposed subjects with no acute febrile disease, (asymptomatic subjects, AS), and 50 ZIKV-naive and DENV naive AS. Commercial ELISA tests were evaluated with sera from 57 ZIKV and 20 DENV PCR-confirmed cases, and 50 ZIKV-naive, DENV-exposed AS. In-house ELISA assays showed that IgM antibody levels against rEIII-ZIKV and rNS1ß-ZIKV were higher in ZIKV naive, DENV-exposed AS than in acutely infected ZIKV individuals. IgG reactivity was highest for rEIII-ZIKV, and indistinguishable between acutely infected ZIKV cases and DENV exposed AS. Positivity for the Euroimmun Zika IgM assay at 7-10 days was considerably higher in DENV-naive ZIKV patients (86%) than in DENV-exposed ZIKV patients (33%), while 39% of the latter had false-negative anti-ZIKV IgG before 7 days of onset. DENV-exposed ZIKV patients presented lower anti-ZIKV IgM and higher IgG responses similar to a secondary dengue response. Forty-four percent of DENV- exposed acute ZIKV patients were DENV IgM positive with the Panbio Dengue assay, and two (15%) of the DENV-naive ZIKV patients presented false DENV IgG conversion. Given the extensive cross-reactivity to both the NS1 and EDIII proteins in current serological methods, the development of sensitive and specific serological tests to distinguish ZIKV from DENV infections is an urgent priority.


Subject(s)
Antibodies, Viral/blood , Dengue Virus/immunology , Zika Virus/immunology , Cross Reactions , Enzyme-Linked Immunosorbent Assay/methods , Humans , Serologic Tests
16.
J Immunol Res ; 2019: 7239347, 2019.
Article in English | MEDLINE | ID: mdl-31565661

ABSTRACT

Zika virus (ZIKV), an emerging mosquito-borne flavivirus, has quickly spread in many regions around the world where dengue virus (DENV) is endemic. This represents a major health concern, given the high homology between these two viruses, which can result in cross-reactivity. The aim of this study was to determine the cross-reacting antibody response of the IgM and IgG classes against the recombinant envelope protein of ZIKV (rE-ZIKV) in sera from patients with acute-phase infection of different clinical forms of dengue, i.e., dengue fever (DF) and dengue hemorrhagic fever (DHF) (before the arrival of ZIKV in Mexico 2010), as well as acute-phase sera of ZIKV patients, together with the implications in neutralization and antibody-dependent enhancement. Differences in IgM responses were observed in a number of DF and DHF patients whose sera cross-reacted with the rE-ZIK antigen, with 42% recognition between acute-phase DHF and ZIKV but 27% recognition between DF and ZIKV. Regarding IgG antibodies, 71.5% from the DF group showed cross-reactivity to rE-ZIKV in contrast with 50% and only 25% of DHF and ZIKV serum samples, respectively, which specifically recognized the homologous antigen. The DHF group showed more enhancement of ZIKV infection of FCRγ-expressing cells compared to the DF group. Furthermore, the DHF group also showed a higher cross-neutralizing ability than that of DF. This is the first report where DF and DHF serum samples were evaluated for cross-reactivity against Zika protein and ZIKV. Furthermore, DENV serum samples cross-protect against ZIKV through neutralizing antibodies but at the same time mediate antibody-dependent enhancement in the sequential ZIKV infection.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Cross Reactions/immunology , Dengue Virus/immunology , Dengue/immunology , Zika Virus Infection/immunology , Zika Virus/immunology , Adolescent , Adult , Cell Line , Child , Child, Preschool , Dengue/epidemiology , Dengue Virus/genetics , Female , Humans , Male , Mexico/epidemiology , Middle Aged , Neutralization Tests , Population Surveillance , Young Adult , Zika Virus/genetics , Zika Virus Infection/epidemiology
17.
Protein Expr Purif ; 162: 38-43, 2019 10.
Article in English | MEDLINE | ID: mdl-31112759

ABSTRACT

The envelope (E) protein from Dengue and Zika viruses comprises three functional and structural domains (DI, DII, and DIII). Domain III induces most of the neutralizing antibodies and, as such, is considered as having the highest antigenic potential for the evaluation of population-level surveillance and for detecting past infections in both Dengue and Zika patients. The present study aimed to clone and express recombinant proteins of domain III from Dengue virus serotype 2 and from Zika virus in a prokaryotic system, as well as evaluate their immunogenicity and cross-reactivity. Both antigens were successfully purified and their antigenicity was assessed in mice. The antibodies elicited by domain III of Zika and Dengue virus antigens recognized specifically the native proteins in infected cells. Furthermore, the antigens showed a more specific immunogenic response than that of domain III proteins from Dengue virus. The generated recombinant proteins can be potentially used in subunit vaccines or for surveillance studies.


Subject(s)
Dengue Virus/genetics , Viral Envelope Proteins/genetics , Viral Envelope Proteins/isolation & purification , Zika Virus/genetics , Animals , Antibodies, Viral/immunology , Cross Reactions , Dengue/immunology , Dengue/prevention & control , Dengue/virology , Dengue Vaccines , Dengue Virus/chemistry , Dengue Virus/immunology , Female , Gene Expression , Humans , Mice , Mice, Inbred BALB C , Protein Domains , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/immunology , Viral Vaccines/chemistry , Viral Vaccines/genetics , Viral Vaccines/immunology , Viral Vaccines/isolation & purification , Zika Virus/chemistry , Zika Virus/immunology , Zika Virus Infection/immunology , Zika Virus Infection/prevention & control , Zika Virus Infection/virology
18.
Parasit Vectors ; 11(1): 378, 2018 Jul 03.
Article in English | MEDLINE | ID: mdl-29970133

ABSTRACT

BACKGROUND: Co-circulation of dengue virus (DENV) and chikungunya virus (CHIKV) is increasing worldwide but information on the viral dynamics and immune response to DENV-CHIKV co-infection, particularly in young infants, is scant. METHODS: Blood samples were collected from 24 patients, aged 2 months to 82 years, during a CHIKV outbreak in Mexico. DENV and CHIKV were identified by RT-PCR; ELISA was used to detect IgM and IgG antibodies. CHIKV PCR products were cloned, sequenced and subjected to BLAST analysis. To address serological findings, HMEC-1 and Vero cells were inoculated with DENV-1, DENV-2 and CHIKV alone and in combination (DENV-2-CHIKV and DENV-1-CHIKV); viral titers were measured at 24, 48 and 72 h. RESULTS: Nine patients (38%) presented co-infection, of who eight were children. None of the patients presented severe illness. Sequence analysis showed that the circulating CHIKV virus belonged to the Asian lineage. Seroconversion to both viruses was only observed in the four patients five years or older, while the five infants under two years of age only seroconverted to CHIKV. Viral titers in the CHIKV mono-infected cells were greater than in the DENV-1 and DENV-2 mono-infected cells. Furthermore, we observed significantly increased CHIKV progeny and reduction of DENV progeny in the co-infected cells. CONCLUSIONS: In our population, DENV-CHIKV co-infection was not associated with increased clinical severity. Our in vitro assay findings strongly suggest that the lack of DENV IgG conversion in the co-infected infants is due to suppression of DENV replication by the Asian lineage CHIKV. The presence of maternal antibody and immature immune responses in the young infants may also play a role.


Subject(s)
Chikungunya Fever/epidemiology , Coinfection/epidemiology , Dengue/epidemiology , Virus Replication , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Antibodies, Viral/blood , Chikungunya Fever/blood , Chikungunya Fever/virology , Chikungunya virus/genetics , Chikungunya virus/immunology , Chikungunya virus/isolation & purification , Child , Child, Preschool , Chlorocebus aethiops , Coinfection/blood , Coinfection/virology , Dengue/blood , Dengue/virology , Dengue Virus/genetics , Dengue Virus/immunology , Dengue Virus/isolation & purification , Disease Outbreaks , Female , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Infant , Male , Mexico/epidemiology , Middle Aged , Polymerase Chain Reaction , Serologic Tests , Vero Cells , Young Adult
19.
Immunobiology ; 223(11): 608-617, 2018 11.
Article in English | MEDLINE | ID: mdl-30007822

ABSTRACT

The skin is the first anatomical region that dengue virus (DENV) encounters during the natural infection. Although the role of some skin resident cells like dendritic cells and fibroblasts has been demonstrated to be crucial to elucidate the role of resident cells and molecules participating during the early events of the innate immune response, the participation of keratinocytes during DENV infection has not been fully elucidated. In this paper we aimed to evaluate the use of the HaCaT cell line as a model to study the immune responses of skin keratinocytes to DENV infection. We demonstrated productive DENV-2 infection of HaCaT cells and their capability to establish an antiviral response through production of type I and type III interferons (IFN-ß and IFN-λ). The production of these cytokines by HaCaT cells correlated with upregulation of IFN-inducible transmembrane protein-3 (IFITM3) and viperin in bystander, uninfected cells. We also observed an increase in secretion of IL-6 and IL-8. Skin keratinocytes are known to secrete antimicrobial peptides (AMPs) during viral infections. In our model, DENV-2 infected HaCaT cells upregulate the production of cytoplasmic LL-37. We evaluated the dual role of LL-37, HBD2, and HBD3 antiviral activity and immunoregulation during DENV-2 infection of HaCaT cells and found that LL-37 significantly reduced DENV-2 replication. This indicates that the HaCaT cell line can be used as a model for studying the innate response of keratinocytes to DENV infection. Our results also suggest that skin keratinocytes play an important role in the skin microenvironment after DENV infection by secreting molecules like type I and type III IFNs, pro-inflammatory molecules, and LL-37, which may contribute to the protection against arboviral infections.


Subject(s)
Antimicrobial Cationic Peptides/metabolism , Dendritic Cells/immunology , Dengue Virus/physiology , Dengue/immunology , Interferons/metabolism , Keratinocytes/physiology , Skin/immunology , Cells, Cultured , Humans , Immunity, Innate , Interleukin-6/metabolism , Interleukin-8/metabolism , Membrane Proteins/metabolism , Oxidoreductases Acting on CH-CH Group Donors , Proteins/metabolism , RNA-Binding Proteins/metabolism , Skin/virology , Up-Regulation , Cathelicidins
20.
Pathog Dis ; 75(7)2017 09 29.
Article in English | MEDLINE | ID: mdl-28903546

ABSTRACT

The placenta is a highly specialized organ that is formed during human gestation for conferring protection and generating an optimal microenvironment to maintain the equilibrium between immunological and biochemical factors for fetal development. Diverse pathogens, including viruses, can infect several cellular components of the placenta, such as trophoblasts, syncytiotrophoblasts and other hematopoietic cells. Viral infections during pregnancy have been associated with fetal malformation and pregnancy complications such as preterm labor. In this minireview, we describe the most recent findings regarding virus-host interactions at the placental interface and investigate the mechanisms through which viruses may access trophoblasts and the pathogenic processes involved in viral dissemination at the maternal-fetal interface.


Subject(s)
Placenta/pathology , Placenta/virology , Pregnancy Complications, Infectious/virology , Virus Diseases/pathology , Female , Humans , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...