Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 33(4): 755-763.e3, 2023 02 27.
Article in English | MEDLINE | ID: mdl-36702128

ABSTRACT

Reptiles display great diversity in color and pattern, yet much of what we know about vertebrate coloration comes from classic model species such as the mouse and zebrafish.1,2,3,4 Captive-bred ball pythons (Python regius) exhibit a remarkable degree of color and pattern variation. Despite the wide range of Mendelian color phenotypes available in the pet trade, ball pythons remain an overlooked species in pigmentation research. Here, we investigate the genetic basis of the recessive piebald phenotype, a pattern defect characterized by patches of unpigmented skin (leucoderma). We performed whole-genome sequencing and used a case-control approach to discover a nonsense mutation in the gene encoding the transcription factor tfec, implicating this gene in the leucodermic patches in ball pythons. We functionally validated tfec in a lizard model (Anolis sagrei) using the gene editing CRISPR/Cas9 system and TEM imaging of skin. Our findings show that reading frame mutations in tfec affect coloration and lead to a loss of iridophores in Anolis, indicating that tfec is required for chromatophore development. This study highlights the value of captive-bred ball pythons as a model species for accelerating discoveries on the genetic basis of vertebrate coloration.


Subject(s)
Chromatophores , Lizards , Piebaldism , Animals , Mice , Zebrafish , Lizards/genetics , Pigmentation/genetics , Zebrafish Proteins , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
2.
Mol Ecol ; 30(9): 2054-2064, 2021 05.
Article in English | MEDLINE | ID: mdl-33713378

ABSTRACT

Parallel evolution is considered strong evidence for natural selection. However, few studies have investigated the process of parallel selection as it plays out in real time. The common approach is to study historical signatures of selection in populations already well adapted to different environments. Here, to document selection under natural conditions, we study six populations of threespine stickleback (Gasterosteus aculeatus) inhabiting bar-built estuaries that undergo seasonal cycles of environmental changes. Estuaries are periodically isolated from the ocean due to sandbar formation during dry summer months, with concurrent environmental shifts that resemble the long-term changes associated with postglacial colonization of freshwater habitats by marine populations. We used pooled whole-genome sequencing to track seasonal allele frequency changes in six of these populations and search for signatures of natural selection. We found consistent changes in allele frequency across estuaries, suggesting a potential role for parallel selection. Functional enrichment among candidate genes included transmembrane ion transport and calcium binding, which are important for osmoregulation and ion balance. The genomic changes that occur in threespine stickleback from bar-built estuaries could provide a glimpse into the early stages of adaptation that have occurred in many historical marine to freshwater transitions.


Subject(s)
Smegmamorpha , Animals , Estuaries , Genomics , Seasons , Selection, Genetic , Smegmamorpha/genetics
3.
J Hered ; 110(6): 684-695, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31300816

ABSTRACT

Identifying genetic variation involved in thermal adaptation is likely to yield insights into how species adapt to different climates. Physiological and behavioral responses associated with overwintering (e.g., torpor) are thought to serve important functions in climate adaptation. In this study, we use 2 isolated Peromyscus leucopus lineages on the northern margin of the species range to identify single nucleotide polymorphisms (SNPs) showing a strong environmental association and test for evidence of parallel evolution. We found signatures of clinal selection in each lineage, but evidence of parallelism was limited, with only 2 SNPs showing parallel allele frequencies across transects. These parallel SNPs map to a gene involved in protection against iron-dependent oxidative stress (Fxn) and to a gene with unknown function but containing a forkhead-associated domain (Fhad1). Furthermore, within transects, we find significant clinal patterns in genes enriched for functions associated with glycogen homeostasis, synaptic function, intracellular Ca2+ balance, H3 histone modification, as well as the G2/M transition of cell division. Our results are consistent with recent literature on the cellular and molecular basis of climate adaptation in small mammals and provide candidate genomic regions for further study.


Subject(s)
Climate , Genetic Variation , Genetics, Population , Genomics , Peromyscus/genetics , Selection, Genetic , Alleles , Animals , Computational Biology/methods , Environment , Gene Frequency , Genomics/methods , Geography , Inbreeding , Linkage Disequilibrium , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...