Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Eur J Clin Microbiol Infect Dis ; 43(5): 895-904, 2024 May.
Article in English | MEDLINE | ID: mdl-38472522

ABSTRACT

PURPOSE: Campylobacter is a frequent cause of enteric infections with common antimicrobial resistance issues. The most recent reports of campylobacteriosis in Italy include data from 2013 to 2016. We aimed to provide national epidemiological and microbiological data on human Campylobacter infections in Italy during the period 2017-2021. METHODS: Data was collected from 19 Hospitals in 13 Italian Regions. Bacterial identification was performed by mass spectrometry. Antibiograms were determined with Etest or Kirby-Bauer (EUCAST criteria). RESULTS: In total, 5419 isolations of Campylobacter spp. were performed. The most common species were C. jejuni (n = 4535, 83.7%), followed by C. coli (n = 732, 13.5%) and C. fetus (n = 34, 0.6%). The mean age of patients was 34.61 years and 57.1% were males. Outpatients accounted for 54% of the cases detected. Campylobacter were isolated from faeces in 97.3% of cases and in 2.7% from blood. C. fetus was mostly isolated from blood (88.2% of cases). We tested for antimicrobial susceptibility 4627 isolates (85.4%). Resistance to ciprofloxacin and tetracyclines was 75.5% and 54.8%, respectively; resistance to erythromycin was 4.8%; clarithromycin 2% and azithromycin 2%. 50% of C. jejuni and C. coli were resistant to ≥ 2 antibiotics. Over the study period, resistance to ciprofloxacin and tetracyclines significantly decreased (p < 0.005), while resistance to macrolides remained stable. CONCLUSION: Campylobacter resistance to fluoroquinolones and tetracyclines in Italy is decreasing but is still high, while macrolides retain good activity.


Subject(s)
Anti-Bacterial Agents , Campylobacter Infections , Campylobacter , Microbial Sensitivity Tests , Humans , Campylobacter Infections/epidemiology , Campylobacter Infections/microbiology , Italy/epidemiology , Female , Male , Adult , Anti-Bacterial Agents/pharmacology , Middle Aged , Young Adult , Adolescent , Aged , Campylobacter/drug effects , Campylobacter/isolation & purification , Child , Child, Preschool , Infant , Feces/microbiology , Drug Resistance, Bacterial , Aged, 80 and over , Infant, Newborn , Campylobacter jejuni/drug effects , Campylobacter jejuni/isolation & purification
2.
Antibiotics (Basel) ; 12(9)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37760674

ABSTRACT

In this study, we describe a Salmonella enterica serovar (S.) Rissen strain with a reduced susceptibility to meropenem, isolated from a urinary infection in an 89-year-old woman in 2018 during activity surveillance in Italy (Enter-Net Italia). The genomic characteristics, pathogenicity, and antimicrobial resistance mechanisms were investigated via a genomic approach. Antimicrobial susceptibility testing revealed a "susceptible, increased exposure" phenotype to meropenem in the S. Rissen strain (4_29_19). Whole-genome sequencing (WGS) was performed using both the NovaSeq 6000 S4 PE150 XP platform (Illumina, San Diego, CA, USA) and MinION (Oxford Nanopore). The S. Rissen 4_29_19 strain harboured two plasmids: a pKpQIL-like plasmid carrying the blaKPC-3 resistance gene in a Tn4401a transposon (pKPC_4_29_19), and a ColE-like plasmid (p4_4_29_19) without resistance genes, highly prevalent among Enterobacterales. Comparative analysis revealed that the pKPC_4_29_19 plasmid was highly related to the pKpQIL reference plasmid (GU595196), with 57% coverage and 99.96% identity, but lacking a region of about 30 kb, involving the FIIK2 replicon region and the entire transfer locus, causing the loss of its ability to conjugate. To our knowledge, this is the first time that a pKpQIL-like plasmid, carrying blaKPC-3, highly diffused in Klebsiella pneumoniae strains, has been identified in a Salmonella strain in our country. The acquisition of blaKPC genes by Salmonella spp. is extremely rare, and is reported only sporadically. In zoonotic bacteria isolated from humans, the presence of a carbapenem resistance gene carried by mobile genetic elements, usually described in healthcare-associated infection bacteria, represents an important concern for public health.

3.
Antimicrob Agents Chemother ; 67(8): e0036823, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37428086

ABSTRACT

In 2021, Klebsiella pneumoniae sequence type 307 (ST307) strains causing pulmonary and bloodstream infections identified in a hospital in Rome, Italy, reached high levels of resistance to ceftazidime-avibactam (CZA). One of these strains reached high levels of resistance to both CZA and carbapenems and carried two copies of blaKPC-3 and one copy of blaKPC-31 located on plasmid pKpQIL. The genomes and plasmids of CZA-resistant ST307 strains were analyzed to identify the molecular mechanisms leading to the evolution of resistance and compared with ST307 genomes at local and global levels. A complex pattern of multiple plasmids in rearranged configurations, coresident within the CZA-carbapenem-resistant K. pneumoniae strain, was observed. Characterization of these plasmids revealed recombination and segregation events explaining why K. pneumoniae isolates from the same patient had different antibiotic resistance profiles. This study illustrates the intense genetic plasticity occurring in ST307, one of the most worldwide-diffused K. pneumoniae high-risk clones.


Subject(s)
Anti-Bacterial Agents , Klebsiella Infections , Humans , Meropenem/pharmacology , Anti-Bacterial Agents/pharmacology , Klebsiella pneumoniae , Klebsiella Infections/drug therapy , Bacterial Proteins/genetics , beta-Lactamases/genetics , Ceftazidime/pharmacology , Azabicyclo Compounds/pharmacology , Plasmids/genetics , Carbapenems , Microbial Sensitivity Tests
4.
Front Public Health ; 11: 1129083, 2023.
Article in English | MEDLINE | ID: mdl-36969662

ABSTRACT

Introduction: Several Proficiency Test (PT) or External Quality Assessment (EQA) schemes are currently available for assessing the ability of laboratories to detect and characterize enteropathogenic bacteria, but they are usually targeting one sector, covering either public health, food safety or animal health. In addition to sector-specific PTs/EQAs for detection, cross-sectoral panels would be useful for assessment of the capacity to detect and characterize foodborne pathogens in a One Health (OH) perspective and further improving food safety and interpretation of cross-sectoral surveillance data. The aims of the study were to assess the cross-sectoral capability of European public health, animal health and food safety laboratories to detect, characterize and notify findings of the foodborne pathogens Campylobacter spp., Salmonella spp. and Yersinia enterocolitica, and to develop recommendations for future cross-sectoral PTs and EQAs within OH. The PT/EQA scheme developed within this study consisted of a test panel of five samples, designed to represent a theoretical outbreak scenario. Methods: A total of 15 laboratories from animal health, public health and food safety sectors were enrolled in eight countries: Denmark, France, Italy, the Netherlands, Poland, Spain, Sweden, and the United Kingdom. The laboratories analyzed the samples according to the methods used in the laboratory and reported the target organisms at species level, and if applicable, serovar for Salmonella and bioserotype for Yersinia. Results: All 15 laboratories analyzed the samples for Salmonella, 13 for Campylobacter and 11 for Yersinia. Analytical errors were predominately false negative results. One sample (S. Stockholm and Y. enterocolitica O:3/BT4) with lower concentrations of target organisms was especially challenging, resulting in six out of seven false negative results. These findings were associated with laboratories using smaller sample sizes and not using enrichment methods. Detection of Salmonella was most commonly mandatory to notify within the three sectors in the eight countries participating in the pilot whereas findings of Campylobacter and Y. enterocolitica were notifiable from human samples, but less commonly from animal and food samples. Discussion: The results of the pilot PT/EQA conducted in this study confirmed the possibility to apply a cross-sectoral approach for assessment of the joint OH capacity to detect and characterize foodborne pathogens.


Subject(s)
Campylobacter , One Health , Yersinia enterocolitica , Animals , Humans , Salmonella , Laboratories
5.
Front Microbiol ; 14: 1293666, 2023.
Article in English | MEDLINE | ID: mdl-38260875

ABSTRACT

Campylobacteriosis, a prevalent foodborne gastrointestinal infection in Europe, is primarily caused by Campylobacter jejuni and Campylobacter coli, with rising global concerns over antimicrobial resistance in these species. This study comprehensively investigates 133 human-origin Campylobacter spp. strains (102 C. jejuni and 31 C. coli) collected in Italy from 2013 to 2021. The predominant Multilocus Sequence Typing Clonal complexes (CCs) were ST-21 CC and ST-206 CC in C. jejuni and ST-828 CC in C. coli. Ciprofloxacin and tetracycline resistance, mainly attributed to GyrA (T86I) mutation and tet(O) presence, were prevalent, while erythromycin resistance was associated with 23S rRNA gene mutation (A2075G), particularly in C. coli exhibiting multidrug-resistant pattern CipTE. Notable disparities in virulence factors among strains were observed, with C. jejuni exhibiting a higher abundance compared to C. coli. Notably, specific C. jejuni sequence types, including ST-21, ST-5018, and ST-1263, demonstrated significantly elevated counts of virulence genes. This finding underscores the significance of considering both the species and strain-level variations in virulence factor profiles, shedding light on potential differences in the pathogenicity and clinical outcomes associated with distinct C. jejuni lineages. Campylobacter spp. plasmids were classified into three groups comprising pVir-like and pTet-like plasmids families, exhibiting diversity among Campylobacter spp. The study underscores the importance of early detection through Whole Genome Sequencing to identify potential emergent virulence, resistance/virulence plasmids, and new antimicrobial resistance markers. This approach provides actionable public health data, supporting the development of robust surveillance programs in Italy.

6.
Antibiotics (Basel) ; 11(1)2022 01 13.
Article in English | MEDLINE | ID: mdl-35052978

ABSTRACT

BACKGROUND: A collection of human-epidemiologically unrelated S. enterica strains collected over a 3-year period (2016 to 2018) in Italy by the national surveillance Enter-Net Italia was analysed. METHODS: Antimicrobial susceptibility tests, including the determination of minimal inhibitory concentrations (MICs) for colistin, were performed. Colistin resistant strains were analysed by PCR to detect mobile colistin resistance (mcr) genes. In mcr-negative S. enterica serovar Enteritidis strains, chromosomal mutations potentially involved in colistin resistance were identified by a genomic approach. RESULTS: The prevalence of colistin-resistant S. enterica strains was 7.7%, the majority (87.5%) were S. Enteritidis. mcr genes were identified only in one strain, a S. Typhimurium monophasic variant, positive for both mcr-1.1 and mcr-5.1 genes in an IncHI2 ST4 plasmid. Several chromosomal mutations were identified in the colistin-resistant mcr-negative S. Enteritidis strains in proteins involved in lipopolysaccharide and outer membrane synthesis and modification (RfbN, LolB, ZraR) and in a component of a multidrug efflux pump (MdsC). These mutated proteins were defined as possible candidates for colistin resistance in mcr-negative S. Enteritidis of our collection. CONCLUSIONS: The colistin national surveillance in Salmonella spp. in humans, implemented with genomic-based surveillance, permitted to monitor colistin resistance, determining the prevalence of mcr determinants and the study of new candidate mechanisms for colistin resistance.

7.
Plasmid ; 118: 102392, 2021 11.
Article in English | MEDLINE | ID: mdl-30529488

ABSTRACT

IncI1 has become one of the most common plasmid families in contemporary Enterobacteriaceae from both human and animal sources. In clinical epidemiology, this plasmid type ranks first as the confirmed vehicle of transmission of extended spectrum beta-lactamase and plasmid AmpC genes in isolates from food-producing animals. In this review, we describe the epidemiology and evolution of IncI1 plasmids and closely related IncIγ plasmids. We highlight the emergence of epidemic plasmids circulating among different bacterial hosts in geographically distant countries, and we address the phylogeny of the IncI1 and IncIγ family based on plasmid Multilocus Sequence Typing.


Subject(s)
Anti-Bacterial Agents , Escherichia coli Infections , Animals , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Enterobacteriaceae/genetics , Escherichia coli/genetics , Humans , Multilocus Sequence Typing , Plasmids/genetics , beta-Lactamases/genetics
8.
mSphere ; 5(2)2020 04 29.
Article in English | MEDLINE | ID: mdl-32350092

ABSTRACT

Escherichia coli sequence type 167 (ST167), producing the metallo beta-lactamase NDM-5, has been isolated as a colonizer of patients recovered at the University Hospital Policlinico Umberto I of Rome. Phylogenesis and comparative analysis of the genomes of these strains were performed against 343 ST167 genomes available from the EnteroBase database. These analyses revealed that resistance plasmids, integrative conjugative elements (ICEs), carrying the yersiniabactin virulence trait and capsular synthesis gene clusters had variable compositions and distributions within different strains of the ST167 clone. A novel capsular synthesis gene cluster, highly similar to the K48 cluster previously described only for Klebsiella pneumoniae, was identified in phylogenetically related strains of the ST167 clone.IMPORTANCE Global dissemination of some E. coli high-risk clones has been described in the last decades. The most widespread was the ST131 clone, associated with extended-spectrum-beta-lactamase (ESBL) production. Genomics of ST131 demonstrated that one clade within the ST emerged in the early 2000s, followed by a rapid, global expansion. The E. coli ST167 clone is emerging throughout the world, being frequently reported for its association with carbapenem resistance. Our study shows that virulence features are differently represented within the ST167 population. One clade shows the K48 capsular synthesis gene cluster of K. pneumoniae, not previously described for E. coli, and is populated by NDM-5-producing strains. The combination of resistance and virulence may sustain the global expansion of this specific ST167 clade.


Subject(s)
Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli/genetics , Phylogeny , beta-Lactamases/genetics , Escherichia coli/enzymology , Escherichia coli/pathogenicity , Escherichia coli Infections , Genomics , Humans , Italy , Klebsiella pneumoniae/genetics , Microbial Sensitivity Tests , Multigene Family , Whole Genome Sequencing
9.
Front Microbiol ; 9: 1906, 2018.
Article in English | MEDLINE | ID: mdl-30186251

ABSTRACT

Campylobacter spp. is one of the main cause of bacterial gastroenteritis in the world. The increase of antibiotic resistance in this species is a threat to public health. A Campylobacter spp. surveillance study was performed in Italy in the 2013-2016 period by the Enter-Net Italia network. The most prevalent Campylobacter species identified causing gastroenteritis was Campylobacter jejuni (73.4%) and 45% of all the annual cases of campylobacteriosis were reported in the summer period. High rates of ciprofloxacin and tetracycline resistance in Campylobacter spp. have been observed. An increasing percentage of Campylobacter coli strains simultaneously resistant to ciprofloxacin, tetracycline and erythromycin has been found. Molecular mechanisms of resistance have been investigated and the role of efflux pumps evaluated. Antibiotic resistance in Campylobacter spp. is an increasing serious threat that requires coordinated action to minimize the emergence and spread of antimicrobial resistant strains from animals to humans throughout the food chain.

10.
Article in English | MEDLINE | ID: mdl-28191308

ABSTRACT

BACKGROUND: Ralstonia spp, an environmental microorganism, has been occasionally associated with healthcare infections. The aim of this study was to investigate an outbreak caused by Ralstonia mannitolilytica in oncology patients. METHODS: Case definition: Oncology outpatients attending a day ward, with positive blood and/or central venous catheter (CVC) culture for Ralstonia spp from September 2013 - June 2014. We analysed medical records, procedures and environmental samples. R. mannitolilytica was identified by 16S rRNA sequencing, and typed by Pulsed Field Gel Electrophoresis (PFGE); resistance to carbapenemes was investigated by phenotypic and molecular methods. RESULTS: The patients (N = 22) had different malignancies and received different therapy; all had a CVC and 16 patients presented chills and/or fever. R. mannitolilytica was isolated from both blood and CVC (n = 12) or only blood (n = 6) or CVC tips (n = 4). The isolates had indistinguishable PFGE profile, and showed resistance to carbapenems. All the isolates were negative for carbapenemase genes while phenotypic tests suggests the presence of an AmpC ß-lactamase activity,responsible for carbapenem resistance. All patients had had CVC flushed with saline to keep the venous access pervious or before receiving chemotherapy at various times before the onset of symptoms. After the first four cases occurred, the multi-dose saline bottles used for CVC flushing were replaced with single-dose vials; environmental samples were negative for R. mannitolilytica. CONCLUSIONS: Although the source of R. mannitolilytica remains unidentified, CVC flushing with contaminated saline solution seems to be the most likely origin of R. mannitolilytica CVC colonization and subsequent infections. In order to prevent similar outbreaks we recommend removal of any CVC that is no longer necessary and the use of single-dose solutions for any parenteral treatment of oncology patients.

12.
PLoS One ; 10(11): e0142973, 2015.
Article in English | MEDLINE | ID: mdl-26606430

ABSTRACT

Following the identification of a case of severe clinical mastitis in a Saanen dairy goat (goat A), an average of 26 lactating goats in the herd was monitored over a period of 11 months. Milk microbiological analysis revealed the presence of Pseudomonas aeruginosa in 7 of the goats. Among these 7 does, only goat A showed clinical signs of mastitis. The 7 P. aeruginosa isolates from the goat milk and 26 P. aeruginosa isolates from environmental samples were clustered by RAPD-PCR and PFGE analyses in 3 genotypes (G1, G2, G3) and 4 clusters (A, B, C, D), respectively. PFGE clusters A and B correlated with the G1 genotype and included the 7 milk isolates. Although it was not possible to identify the infection source, these results strongly suggest a spreading of the infection from goat A. Clusters C and D overlapped with genotypes G2 and G3, respectively, and included only environmental isolates. The outcome of the antimicrobial susceptibility test performed on the isolates revealed 2 main patterns of multiple resistance to beta-lactam antibiotics and macrolides. Virulence related phenotypes were analyzed, such as swarming and swimming motility, production of biofilm and production of secreted virulence factors. The isolates had distinct phenotypic profiles, corresponding to genotypes G1, G2 and G3. Overall, correlation analysis showed a strong correlation between sampling source, RAPD genotype, PFGE clusters, and phenotypic clusters. The comparison of the levels of virulence related phenotypes did not indicate a higher pathogenic potential in the milk isolates as compared to the environmental isolates.


Subject(s)
Animal Diseases/microbiology , Environmental Microbiology , Genotype , Goats/microbiology , Mastitis/veterinary , Phenotype , Pseudomonas aeruginosa/genetics , Animals , Anti-Bacterial Agents/pharmacology , Cluster Analysis , Female , Microbial Sensitivity Tests , Molecular Typing , Phylogeny , Pseudomonas aeruginosa/classification , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/isolation & purification , Virulence Factors
13.
PLoS One ; 10(6): e0132065, 2015.
Article in English | MEDLINE | ID: mdl-26121266

ABSTRACT

In developed countries, typhoid fever is often associated with persons who travel to endemic areas or immigrate from them. Typhoid fever is a systemic infection caused by Salmonella enterica serovar Typhi. Because of the emergence of antimicrobial resistance to standard first-line drugs, fluoroquinolones are the drugs of choice. Resistance to ciprofloxacin by this Salmonella serovar represents an emerging public health issue. Two S. enterica ser. Typhi strains resistant to ciprofloxacin (CIP) were reported to the Italian surveillance system for foodborne and waterborne diseases (EnterNet-Italia) in 2013. The strains were isolated from two Italian tourists upon their arrival from India. A retrospective analysis of 17 other S. enterica ser. Typhi strains isolated in Italy during 2011-2013 was performed to determine their resistance to CIP. For this purpose, we assayed for susceptibility to antimicrobial agents and conducted PCR and nucleotide sequence analyses. Moreover, all strains were typed using pulsed-field gel electrophoresis to evaluate possible clonal relationships. Sixty-eight percent of the S. enterica ser. Typhi strains were resistant to CIP (MICs, 0.125-16 mg/L), and all isolates were negative for determinants of plasmid-mediated quinolone resistance. Analysis of sequences encoding DNA gyrase and topoisomerase IV subunits revealed mutations in gyrA, gyrB, and parC. Thirteen different clonal groups were detected, and the two CIP-resistant strains isolated from the individuals who visited India exhibited the same PFGE pattern. Because of these findings, the emergence of CIP-resistant S. enterica ser. Typhi isolates in Italy deserves attention, and monitoring antibiotic susceptibility is important for efficiently managing cases of typhoid fever.


Subject(s)
Anti-Bacterial Agents/pharmacology , Ciprofloxacin/pharmacology , Salmonella typhi/drug effects , DNA Gyrase/genetics , DNA Topoisomerase IV/genetics , Drug Resistance, Bacterial/genetics , Fluoroquinolones/pharmacology , Italy , Microbial Sensitivity Tests , Polymerase Chain Reaction , Salmonella typhi/genetics
14.
J Glob Antimicrob Resist ; 3(1): 9-12, 2015 Mar.
Article in English | MEDLINE | ID: mdl-27873656

ABSTRACT

The aim of this study was to investigate the molecular characteristics of commensal Escherichia coli producing extended-spectrum ß-lactamases and showing fluoroquinolone resistance circulating in a healthy population in Ibadan, Nigeria. In total, 101 faecal samples from healthy pregnant women on the day of admission to hospital were collected and plated on eosin-methylene blue agar supplemented with cefotaxime. Genotyping demonstrated the presence of the blaCTX-M-15 gene in all of the cefotaxime-resistant isolates (n=32), and there was circulation of prevalent clones. The aac(6')-Ib-cr, qnrS1, qepA1 and qnrB1 genes were identified in several strains. A novel plasmid supporting the spread of the blaCTX-M-15, blaTEM-1 and qnrS1 genes was identified in these isolates by complete DNA sequencing.

15.
BMC Infect Dis ; 14: 494, 2014 Sep 10.
Article in English | MEDLINE | ID: mdl-25209325

ABSTRACT

BACKGROUND: Extensively drug-resistant Pseudomonas aeruginosa (XDR-PA) isolates are susceptible to only one or two classes of antibiotics. In 2011-2012, we investigated an outbreak of XDR-PA affecting children with onco-hematological diseases. METHODS: Outbreak investigation included ascertainment of cases, tracing of intestinal carriers and environmental surveillance. Contact precautions were adopted for patients with infection or colonization. Isolates were tested for antimicrobial susceptibility; phenotypic confirmation of carbapenemase production was performed, and carbapenemase genes were tested by multiplex polymerase-chain-reaction (PCR). Genotypes were determined by pulsed-field gel electrophoresis (PFGE). RESULTS: XDR-PA was isolated from 27 patients; 12 had bacteremia, 6 other infections and 9 were colonized. Severe neutropenia was significantly associated with bacteremia. Bloodstream-infection mortality rate was 67%. All isolates were resistant to carbapenems, cephalosporins and penicillins + ß-lactamase inhibitors. Isolates were susceptible only to colistin in 22 patients, to colistin and amikacin in 4, and to ciprofloxacin and colistin in 1. PFGE results identified 6 subtypes of a single genotype, associated with clusters of cases, and 4 sporadic genotypes. Two sporadic isolates were metallo-ß-lactamase producers, negative to PCR. All other isolates were metallo-ß-lactamase producers due to the presence of a VIM carbapenemase. Incidence of XDR-PA infections decreased from 0.72 cases/1,000 inpatient-days in March 2011-March 2012, to 0.34/1,000 in April-December 2012, after implementation of active finding of intestinal carriers on all onco-hematological inpatients. CONCLUSIONS: Control measures targeting intestinal carriers are crucial in limiting in-hospital transmission of XDR-PA polyclonal strains, protecting more vulnerable patients, such as severely neutropenic children, from developing clinical infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cross Infection/epidemiology , Cross Infection/microbiology , Drug Resistance, Bacterial , Pseudomonas Infections/epidemiology , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/drug effects , Adolescent , Adult , Carbapenems/pharmacology , Child , Child, Preschool , Cross Infection/drug therapy , Disease Outbreaks , Electrophoresis, Gel, Pulsed-Field , Female , Hospitals, Pediatric/statistics & numerical data , Humans , Infant , Italy/epidemiology , Male , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/isolation & purification , Pseudomonas aeruginosa/physiology , Tertiary Healthcare/statistics & numerical data , Young Adult
17.
Antimicrob Agents Chemother ; 58(7): 3895-903, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24777092

ABSTRACT

In the work presented here, we designed and developed two easy-to-use Web tools for in silico detection and characterization of whole-genome sequence (WGS) and whole-plasmid sequence data from members of the family Enterobacteriaceae. These tools will facilitate bacterial typing based on draft genomes of multidrug-resistant Enterobacteriaceae species by the rapid detection of known plasmid types. Replicon sequences from 559 fully sequenced plasmids associated with the family Enterobacteriaceae in the NCBI nucleotide database were collected to build a consensus database for integration into a Web tool called PlasmidFinder that can be used for replicon sequence analysis of raw, contig group, or completely assembled and closed plasmid sequencing data. The PlasmidFinder database currently consists of 116 replicon sequences that match with at least at 80% nucleotide identity all replicon sequences identified in the 559 fully sequenced plasmids. For plasmid multilocus sequence typing (pMLST) analysis, a database that is updated weekly was generated from www.pubmlst.org and integrated into a Web tool called pMLST. Both databases were evaluated using draft genomes from a collection of Salmonella enterica serovar Typhimurium isolates. PlasmidFinder identified a total of 103 replicons and between zero and five different plasmid replicons within each of 49 S. Typhimurium draft genomes tested. The pMLST Web tool was able to subtype genomic sequencing data of plasmids, revealing both known plasmid sequence types (STs) and new alleles and ST variants. In conclusion, testing of the two Web tools using both fully assembled plasmid sequences and WGS-generated draft genomes showed them to be able to detect a broad variety of plasmids that are often associated with antimicrobial resistance in clinically relevant bacterial pathogens.


Subject(s)
Databases, Genetic , Multilocus Sequence Typing/methods , Plasmids/genetics , Computer Simulation , Drug Resistance, Bacterial/genetics , Enterobacteriaceae/genetics , Genome, Bacterial , Internet , Replicon , Reproducibility of Results
18.
PLoS One ; 9(3): e90564, 2014.
Article in English | MEDLINE | ID: mdl-24595207

ABSTRACT

We report the genetic characterization of 15 Klebsiella pneumoniae (KP) and 4 isolates of K. oxytoca (KO) from clinical cases in dogs and cats and showing extended-spectrum cephalosporin (ESC) resistance. Extended spectrum beta-lactamase (ESBL) and AmpC genes, plasmid-mediated quinolone resistance (PMQR) and co-resistances were investigated. Among KP isolates, ST101 clone was predominant (8/15, 53%), followed by ST15 (4/15, 27%). ST11 and ST340, belonging to Clonal Complex (CC)11, were detected in 2012 (3/15, 20%). MLST on KP isolates corresponded well with PFGE results, with 11 different PFGE patterns observed, including two clusters of two (ST340) and four (ST101) indistinguishable isolates, respectively. All isolates harbored at least one ESBL or AmpC gene, all carried on transferable plasmids (IncR, IncFII, IncI1, IncN), and 16/19 were positive for PMQR genes (qnr family or aac(6')-Ib-cr). The most frequent ESBL was CTX-M-15 (11/19, 58%), detected in all KP ST101, in one KP ST15 and in both KP ST340. blaCTX-M-15 was carried on IncR plasmids in all but one KP isolate. All KP ST15 isolates harbored different ESC resistance genes and different plasmids, and presented the non-transferable blaSHV-28 gene, in association with blaCTX-M-15, blaCTX-M-1 (on IncR, or on IncN), blaSHV-2a (on IncR) or blaCMY-2 genes (on IncI1). KO isolates were positive for blaCTX-M-9 gene (on IncHI2), or for the blaSHV-12 and blaDHA-1 genes (on IncL/M). They were all positive for qnr genes, and one also for the aac(6')-Ib-cr gene. All Klebsiella isolates showed multiresistance towards aminoglycosides, sulfonamides, tetracyclines, trimethoprim and amphenicols, mediated by strA/B, aadA2, aadB, ant (2")-Ia, aac(6')-Ib, sul, tet, dfr and cat genes in various combinations. The emergence in pets of multidrug-resistant Klebsiella with ESBL, AmpC and PMQR determinants, poses further and serious challenges in companion animal therapy and raise concerns for possible bi-directional transmission between pets and humans, especially at household level.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Cats/microbiology , Dogs/microbiology , Klebsiella Infections/veterinary , Klebsiella oxytoca/enzymology , Klebsiella pneumoniae/enzymology , Quinolones/pharmacology , beta-Lactamases/genetics , Animals , Drug Resistance, Multiple, Bacterial , Genes, Bacterial , Klebsiella Infections/drug therapy , Klebsiella oxytoca/drug effects , Klebsiella oxytoca/genetics , Klebsiella oxytoca/isolation & purification , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Plasmids/genetics
19.
Antimicrob Agents Chemother ; 58(3): 1707-12, 2014.
Article in English | MEDLINE | ID: mdl-24379204

ABSTRACT

Full genome sequences were determined for five Klebsiella pneumoniae strains belonging to the sequence type 512 (ST512) clone, producing KPC-3. Three strains were resistant to tigecycline, one showed an intermediate phenotype, and one was susceptible. Comparative analysis performed using the genome of the susceptible strain as a reference sequence identified genetic differences possibly associated with resistance to tigecycline. Results demonstrated that mutations in the ramR gene occurred in two of the three sequenced strains. Mutations in RamR were previously demonstrated to cause overexpression of the AcrAB-TolC efflux system and were implicated in tigecycline resistance in K. pneumoniae. The third strain showed a mutation located at the vertex of a very well conserved loop in the S10 ribosomal protein, which is located in close proximity to the tigecycline target site in the 30S ribosomal subunit. This mutation was previously shown to be associated with tetracycline resistance in Neisseria gonorrhoeae. A PCR-based approach was devised to amplify the potential resistance mechanisms identified by genomics and applied to two additional ST512 strains showing resistance to tigecycline, allowing us to identify mutations in the ramR gene.


Subject(s)
Anti-Bacterial Agents/pharmacology , Klebsiella pneumoniae/drug effects , Minocycline/analogs & derivatives , Ribosomal Proteins/genetics , Bacterial Outer Membrane Proteins/genetics , Base Sequence , Drug Resistance, Bacterial/genetics , Genes, Bacterial/genetics , Genome, Bacterial/genetics , Klebsiella pneumoniae/genetics , Minocycline/pharmacology , Molecular Sequence Data , Mutation/genetics , Tigecycline
20.
Antimicrob Agents Chemother ; 56(4): 2143-5, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22252815

ABSTRACT

A carbapenemase-resistant Klebsiella pneumoniae strain, clone ST258 producing KPC-3, was fully characterized. The entire plasmid content was investigated, thereby identifying plasmids of the IncFII(k) (two of them similar to pKPQIL and pKPN3, respectively), IncX, and ColE types, carrying a formidable set of resistance genes against toxic compounds, metals, and antimicrobial drugs and a novel iron(III) uptake system.


Subject(s)
Bacterial Proteins/genetics , Drug Resistance, Bacterial/genetics , Klebsiella pneumoniae/enzymology , Klebsiella pneumoniae/genetics , Plasmids/genetics , Porins/genetics , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Genes, Bacterial/genetics , Genetic Variation , Humans , Iron/metabolism , Klebsiella Infections/microbiology , Klebsiella pneumoniae/drug effects , Metals/pharmacology , Microbial Sensitivity Tests , Molecular Sequence Data
SELECTION OF CITATIONS
SEARCH DETAIL
...