Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nanotechnology ; 35(32)2024 May 24.
Article in English | MEDLINE | ID: mdl-38688253

ABSTRACT

Solid lipid nanoparticles (SLN) are widely recognized for their biocompatibility, scalability, and long-term stability, making them versatile formulations for drug and gene delivery. Cellular interactions, governed by complex endocytic and signaling pathways, are pivotal for successfully applying SLN as a therapeutic agent. This study aims to enhance our understanding of the intricate interplay between SLN and cells by investigating the influence of specific endocytic and cell signaling pathways, with a focus on the impact of the TGF-ßpathway on SLN-mediated cell transfection in both cancerous and non-cancerous prostate cells. Here, we systematically explored the intricate mechanisms governing the interactions between solid lipid nanoparticles and cells. By pharmacologically manipulating endocytic and signaling pathways, we analyzed alterations in SLNplex internalization, intracellular traffic, and cell transfection dynamics. Our findings highlight the significant role of macropinocytosis in the internalization and transfection processes of SLNplex in both cancer and non-cancer prostate cells. Moreover, we demonstrated that the TGF-ßpathway is an important factor influencing endosomal release, potentially impacting gene expression and modulating cell transfection efficiency. This study provides novel insights into the dynamic mechanisms governing the interaction between cells and SLN, emphasizing the pivotal role of TGF-ßsignaling in SLN-mediated transfection, affecting internalization, intracellular transport, and release of the genetic cargo. These findings provide valuable insight for the optimization of SLN-based therapeutic strategies in prostate-related applications.


Subject(s)
Nanoparticles , Prostatic Neoplasms , Transfection , Transforming Growth Factor beta , Humans , Male , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/therapy , Prostatic Neoplasms/pathology , Transfection/methods , Nanoparticles/chemistry , Transforming Growth Factor beta/metabolism , Lipids/chemistry , Cell Line, Tumor , Endocytosis , Gene Transfer Techniques , Signal Transduction
2.
Nanotoxicology ; 18(1): 36-54, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38300021

ABSTRACT

Nanotechnology applications in biomedicine have increased in recent decades, primarily as therapeutic agents, drugs, and gene delivery systems. Among the nanoparticles used in medicine, we highlight cationic solid lipid nanoparticles (SLN). Given their nontoxic properties, much research has focused on the beneficial effects of SLN for drug or gene delivery system. However, little attention has been paid to the adverse impacts of SLN on the cellular environment, particularly their influence on intracellular signaling pathways. In this work, we investigate the effects triggered by cationic SLN on human prostate non-tumor cells (PNT1A) and tumor cells (PC-3). Our results demonstrate that cationic SLN enhances the migration of PC-3 prostate cancer cells but not PNT1A non-tumor prostate cells, an unexpected and unprecedented development. Furthermore, we observed that the enhanced cell migration velocity is a concentration-dependent and nanoparticle-dependent effect, and not related to any individual nanoparticle component. Moreover, cationic SLN increased vimentin expression (p < 0.05) but SLN did not affect Smad2 nuclear translocation. Meanwhile, EMT-related (epithelial-to-mesenchymal transition) proteins, such as ZEB1, underwent nuclear translocation when treated with cationic SLN, thereby affecting PC-3 cell motility through ZEB1 and vimentin modulation. From a therapeutic perspective, cationic SLN could potentially worsen a patient's condition if these results were reproduced in vivo. Understanding the in vitro molecular mechanisms triggered by nanomaterials and their implications for cell function is crucial for defining their safe and effective use.


Subject(s)
Liposomes , Nanoparticles , Prostatic Neoplasms , Male , Humans , Lipids/toxicity , Vimentin , Prostate , Cell Line, Tumor , Plasmids , Nanoparticles/toxicity , DNA
3.
J Microsc ; 2023 Sep 10.
Article in English | MEDLINE | ID: mdl-37690102

ABSTRACT

CellProfiler is a widely used software for creating reproducible, reusable image analysis workflows without needing to code. In addition to the >90 modules that make up the main CellProfiler program, CellProfiler has a plugins system that allows for the creation of new modules which integrate with other Python tools or tools that are packaged in software containers. The CellProfiler-plugins repository contains a number of these CellProfiler modules, especially modules that are experimental and/or dependency-heavy. Here, we present an upgraded CellProfiler-plugins repository, an example of accessing containerised tools, improved documentation and added citation/reference tools to facilitate the use and contribution of the community.

4.
ArXiv ; 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37645041

ABSTRACT

CellProfiler is a widely used software for creating reproducible, reusable image analysis workflows without needing to code. In addition to the >90 modules that make up the main CellProfiler program, CellProfiler has a plugins system that allows for the creation of new modules which integrate with other Python tools or tools that are packaged in software containers. The CellProfiler-plugins repository contains a number of these CellProfiler modules, especially modules that are experimental and/or dependency-heavy. Here, we present an upgraded CellProfiler-plugins repository, an example of accessing containerized tools, improved documentation, and added citation/reference tools to facilitate the use and contribution of the community.

5.
Curr Protoc ; 3(3): e713, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36921124

ABSTRACT

Image-based profiling quantitatively assesses the effects of perturbations on cells by capturing a breadth of changes via microscopy. Here, we provide two complementary protocols to help explore and interpret data from image-based profiling experiments. In the first protocol, we examine the similarity among perturbed cell samples using data from compounds that cluster by their mechanisms of action. The protocol includes steps to examine feature-driving differences between samples and to visualize correlations between features and treatments to create interpretable heatmaps using the open-source web tool Morpheus. In the second protocol, we show how to interactively explore images together with the numerical data, and we provide scripts to create visualizations of representative single cells and image sites to understand how changes in features are reflected in the images. Together, these two tutorials help researchers interpret image-based data to speed up research. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Exploratory analysis of profile similarities and driving features Basic Protocol 2: Image and single-cell visualization following profile interpretation.


Subject(s)
Microscopy , Cluster Analysis
6.
Biomed Pharmacother ; 134: 110952, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33348307

ABSTRACT

pH-sensitive liposomes are interesting carriers for drug-delivery, undertaking rapid bilayer destabilization in response to pH changes, allied to tumor accumulation, a desirable behavior in the treatment of cancer cells. Previously, we have shown that pH-sensitive liposomes accumulate in tumor tissues of mice, in which an acidic environment accelerates drug delivery. Ultimately, these formulations can be internalized by tumor cells and take the endosome-lysosomal route. However, the mechanism of doxorubicin release and intracellular traffic of pH-sensitive liposomes remains unclear. To investigate the molecular mechanisms underlying the intracellular release of doxorubicin from pH-sensitive liposomes, we followed HeLa cells viability, internalization, intracellular trafficking, and doxorubicin's intracellular delivery mechanisms from pH-sensitive (SpHL-DOX) and non-pH-sensitive (nSpHL-DOX) formulations. We found that SpHL-DOX has faster internalization kinetics and intracellular release of doxorubicin, followed by strong nuclear accumulation compared to nSpHL-DOX. The increased nuclear accumulation led to the activation of cleaved caspase-3, which efficiently induced apoptosis. Remarkably, we found that chloroquine and E64d enhanced the cytotoxicity of SpHL-DOX. This knowledge is paramount to improve the efficiency of pH-sensitive liposomes or to be used as a rational strategy for developing new formulations to be applied in vivo.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Doxorubicin/pharmacology , Drug Delivery Systems/methods , Liposomes/chemistry , Animals , Apoptosis/drug effects , Caspase 3/metabolism , Cell Survival/drug effects , Chloroquine/pharmacology , Drug Compounding , HeLa Cells , Humans , Hydrogen-Ion Concentration , Intracellular Space/metabolism , Leucine/analogs & derivatives , Leucine/pharmacology , Mice
7.
Cancers (Basel) ; 12(7)2020 Jul 13.
Article in English | MEDLINE | ID: mdl-32668598

ABSTRACT

Background: Cancer-cachexia induces a variety of metabolic disorders, including skeletal muscle imbalance. Alternative therapy, as nutritional supplementation with leucine, shows a modulatory effect over tumour damage in vivo and in vitro. Method: Adult rats distributed into Control (C), Walker tumour-bearing (W), control fed a leucine-rich diet (L), and tumour-bearing fed a leucine-rich diet (WL) groups had the gastrocnemius muscle metabolomic and proteomic assays performed in parallel to in vitro assays. Results: W group presented an affected muscle metabolomic and proteomic profile mainly related to energy generation and carbohydrates catabolic processes, but leucine-supplemented group (WL) recovered the energy production. In vitro assay showed that cell proliferation, mitochondria number and oxygen consumption were higher under leucine effect than the tumour influence. Muscle proteomics results showed that the main affected cell component was mitochondria, leading to an impacted energy generation, including impairment in proteins of the tricarboxylic cycle and carbohydrates catabolic processes, which were modulated and improved by leucine treatment. Conclusion: In summary, we showed a beneficial effect of leucine upon mitochondria, providing information about the muscle glycolytic pathways used by this amino acid, where it can be associated with the preservation of morphometric parameters and consequent protection against the effects of cachexia.

8.
Eur J Pharm Biopharm ; 151: 162-170, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32311428

ABSTRACT

Bladder cancer is the fifth most common disease in the United States, and the treatment and alternatives for patients have not changed in the last decades. Silver nanoparticles (AgNP) have been used in the treatment of various cancer, mainly because of the antineoplastic activity; however, their use and the molecular mechanisms towards bladder cancer still unexplored. Therefore, this work aims to evaluate the in vitro and in vivo antitumoral mechanisms of biogenic silver nanoparticles synthesized from Fusarium sp. First, AgNP showed cytotoxicity in a dose- and time-response relationship and detailed analysis demonstrated the induction of cell death via apoptosis, also inhibiting cell migration and proliferation in bladder carcinoma cell line 5637. Next, it was evaluated the antitumoral activity of AgNP against non-muscle invasive bladder cancer (NMIBC). Bladder cancer was chemically induced with N-methyl-N-nitrosourea (MNU) on C57BL/6JUnib female mice and treated by intravesical route with AgNP concentrations of 0.5, 0.2, and 0.05 mg/mL. Finally, treatment with AgNP (0.05 mg/mL) led to 57.13% of tumor regression, with 14.28% of the animals showing normal urothelium, and 42.85% showing flat hyperplasia, considered to be a benign lesion. Overall, these findings demonstrated that AgNP might be a cost-effective alternative and promising candidate for the treatment of bladder cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Metal Nanoparticles/administration & dosage , Silver/pharmacology , Urinary Bladder Neoplasms/drug therapy , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Female , Humans , Mice , Mice, Inbred C57BL
9.
Comput Methods Programs Biomed ; 193: 105476, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32302889

ABSTRACT

BACKGROUND AND OBJECTIVE: Image acquisition has greatly benefited from the automation of microscopes and has been followed by an increasing amount and complexity of data acquired. Here, we present the PyScratch, a new tool for processing spatial and temporal information from scratch assays. PyScratch is an open-source software implemented in Python that analyses the migration area in an automated fashion. METHODS: The software was developed in Python. Wound healing assays were used to validate its performance. The images were acquired using Cytation 5™ during 60 h. Data were analyzed using One-Way ANOVA. RESULTS: PyScratch performed a robust analysis of confluent cells, showing that high plating density affects cell migration. Additionally, PyScratch was approximately six times faster than a semi-automated analysis. CONCLUSIONS: PyScratch offers a user-friendly interface allowing researches with little or no programming skills to perform quantitative analysis of in vitro scratch assays.


Subject(s)
Software , Wound Healing , Automation , Cell Movement
10.
Drug Deliv Transl Res ; 10(1): 34-42, 2020 02.
Article in English | MEDLINE | ID: mdl-31240624

ABSTRACT

Cationic solid lipid nanoparticles (cSLNs) are considered as one of the most effective lipid nanocarriers for delivery of low water-solubility compounds and genetic materials. As the excipients used in the cSLN production are generally regarded as safe (GRAS), the formulations are granted as non-toxic. However, the toxicological profile of new SLN-based formulations should always be performed to confirm that the delivery systems themselves may not impose risks to the human health. Therefore, in this study, we delineate the toxicological profile of the cSLN formulation at 24 and 72 h after single intravenous injection to male Wistar rats. Hematological, biochemical, and histopathological evaluations of the spleen, lungs, liver, and kidneys indicated short-lived alterations including neutrophilia. We found increases in the population of macrophages in the lungs, liver, and spleen and also migration of circulating neutrophils into inflamed tissue and a decrease in blood urea nitrogen. We also observed the presence of cSLNs within the brain parenchyma without any sign of damage to the blood-brain barrier. These side effects appeared to be mild and transitory (< 72 h). These findings reinforce the importance of investigating the toxicity of SLN-based formulations before the incorporation of drugs/genetic material to the formulation and its translation to the clinic.


Subject(s)
Blood-Brain Barrier/drug effects , Lipids/chemistry , Macrophages/metabolism , Nanoparticles/toxicity , Administration, Intravenous , Animals , Blood Urea Nitrogen , Cations , Kidney/drug effects , Kidney/immunology , Liver/drug effects , Liver/immunology , Lung/drug effects , Lung/immunology , Macrophages/drug effects , Male , Nanoparticles/chemistry , Particle Size , Rats , Rats, Wistar , Spleen/drug effects , Spleen/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...