Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Article in English | MEDLINE | ID: mdl-38872047

ABSTRACT

Gene therapy holds significant promise as a therapeutic approach for addressing a diverse range of diseases through the suppression of overexpressed proteins and the restoration of impaired cell functions. Developing a nanocarrier that can efficiently load and release genetic material into cells remains a challenge. The primary goal of this study is to develop formulations aimed to enhance the therapeutic potential of GapmeRs through technological approaches. To this end, lipid-polymeric hybrid nanoparticles (LPHNPs) with PLGA, DC-cholesterol, and DOPE-mPEG2000 were produced by conventional single-step nanoprecipitation (SSN) and microfluidic (MF) methods. The optimized nanoparticles by SSN have a size of 149.9 ± 18.07 nm, a polydispersity index (PdI) of 0.23 ± 0.02, and a zeta potential of (ZP) of 29.34 ± 2.44 mV, while by MF the size was 179.8 ± 6.3, a PdI of 0.24 ± 0.01, and a ZP of 32.25 ± 1.36 mV. Furthermore, LPHNPs prepared with GapmeR-protamine by both methods exhibit a high encapsulation efficiency of approximately 90%. The encapsulated GapmeR is completely released in 24 h. The LPHNP suspensions are stable for up to 6 h in 10% FBS at pH 5.4 and 7.4. By contrast, LPHNPs remain stable in suspension in 4.5% albumin at pH 7.4 for 24 h. Additionally, LPHNPs were successfully freeze-dried using trehalose in the range of 2.5-5% as cryoprotectant The LPHNPs produced by MF and SSN increase, 6 and 12 fold respectively, GapmeR cell uptake, and both of them reduce by 60-70% expression of Tob1 in 48 h.Our study demonstrates the efficacy of the developed LPHNPs as carriers for oligonucleotide delivery, offering valuable insights for their scale up production from a conventional bulk methodology to a high-throughput microfluidic technology.

2.
Colloids Surf B Biointerfaces ; 239: 113951, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759295

ABSTRACT

One of the main concerns in oligonucleotide-based therapeutics is achieving a successful cell targeting while avoiding drug degradation and clearance. Nanoparticulated drug delivery systems have emerged as a way of overcoming these issues. Among them, membrane-coated nanoparticles are of increasing relevance mainly due to their enhanced cellular uptake, immune evasion and biocompatibility. In this study, we designed and elaborated a simple and highly tuneable biomimetic drug delivery nanosystem based on a polymeric core surrounded by extracellular vesicles (EVs)-derived membranes. This strategy should allow the nanosystems to benefit from the properties conferred by the membrane proteins present in EVs membrane, key paracrine mediators. The developed systems were able to successfully encapsulate the required oligonucleotides. Also, their characterisation through already well standardised methods (dynamic light scattering, transmission electron microscopy and nanoparticle tracking analysis) and by fluorescence cross-correlation spectroscopy (FCCS) showed the desired core-shell structure. The cellular uptake using different cell types further confirmed the coating though an enhancement in cell internalisation of the developed biomimetic nanoparticles. This study brings up new possibilities for GapmeR delivery as it might be a base for the development of new delivery systems for gene therapy.


Subject(s)
Biomimetic Materials , Extracellular Vesicles , Genetic Therapy , Nanoparticles , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Nanoparticles/chemistry , Humans , Biomimetic Materials/chemistry , Genetic Therapy/methods , Particle Size , Biomimetics/methods , Oligonucleotides/chemistry , Drug Delivery Systems
3.
Int J Biol Macromol ; 249: 126023, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37506785

ABSTRACT

Bone tissue engineering has risen to tackle the challenges of the current clinical need concerning bone fractures that is already considered a healthcare system problem. Scaffold systems for the repair of this tissue have yielded different combinations including biomaterials with nanotechnology or biological agents. Herein, three-dimensional porous hydrogels were engineered based on gelatin as a natural biomaterial and reinforced with synthetic saponite nanoclays. Scaffolds were biocompatible and shown to enhance the inherent properties of pristine ones, in particular, proved to withstand pressures similar to load-bearing tissues. Studies with murine mesenchymal stem cells found that scaffolds had the potential to proliferate and promote cell differentiation. In vivo experiments were conducted to gain insight about the ability of these cell-free scaffolds to regenerate bone, as well as to determine the role that these nanoparticles in the scaffold could play as a drug delivery system. SDF-1 loaded scaffolds showed the highest percentage of bone formation, which was corroborated by osteogenic markers and new blood vessels. Albeit a first attempt in the field of synthetic nanosilicates, these results suggest that the designed constructs may serve as delivery platforms for biomimetic agents to mend bony defects, circumventing high doses of therapeutics and cell-loading systems.


Subject(s)
Gelatin , Tissue Scaffolds , Mice , Animals , Bone Regeneration , Osteogenesis , Biocompatible Materials/pharmacology , Tissue Engineering/methods , Cell Differentiation
4.
Article in English | MEDLINE | ID: mdl-37037204

ABSTRACT

Osteoclasts are the cells responsible for the bone resorption process during bone remodeling. In a healthy situation, this process results from an equilibrium between new matrix formation by osteoblast and matrix resorption by osteoclast. Osteoporosis (OP) is a systemic bone disease characterized by a decreased bone mass density and alterations in bone microarchitecture, increasing fracture predisposition. Despite the variety of available therapies for OP management there is a growing gap in its treatment associated to the low patients' adherence owing to concerns related with long-term efficacy or safety. This makes the development of new and safe treatments necessary. Among the newly developed strategies, the use of synthetic and natural nanoparticles to modulate osteoclasts differentiation, activity, apoptosis or crosstalk with osteoblasts have arisen. Synthetic nanoparticles exert their therapeutic effect either by loading antiresorptive drugs or including molecules for osteoclasts gene regulation. Moreover, this control over osteoclasts can be improved by their targeting to bone extracellular matrix or osteoclast membranes. Furthermore, natural nanoparticles, also known as extracellular vesicles, have been identified to play a key role in bone homeostasis. Consequently, these systems have been widely studied to control osteoblasts and osteoclasts under variable environments. Additionally, the ability to bioengineer extracellular vesicles has allowed to obtain biomimetic systems with desirable characteristics as drug carriers for osteoclasts. The analyzed information reveals the possibility of modulating osteoclasts by different mechanisms through nanoparticles decreasing bone resorption. These findings suggest that controlling osteoclast activity using nanoparticles has the potential to improve osteoporosis management. This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.


Subject(s)
Bone Resorption , Nanoparticles , Osteoporosis , Humans , Osteoclasts/physiology , Bone Resorption/drug therapy , Osteoblasts/physiology , Osteoporosis/drug therapy , Nanoparticles/therapeutic use , Cell Differentiation
5.
Org Biomol Chem ; 21(13): 2705-2708, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36919647

ABSTRACT

Cyclobutane-fused dihydropyridones can be efficiently synthesized by a completely endo-selective gold-catalyzed cyclization of alkynylcyclobutanes bearing an appended amide, which proceeds under mild conditions. The observed selectivity, which is reversed from that previously observed for the cyclization of related alcohols and acids, is supported by DFT calculations.

6.
Biomed Pharmacother ; 156: 113909, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36279721

ABSTRACT

Currently, there is a limited number of treatment options available for patients with symptomatic leiomyomas, and surgical removal is by far the most frequent procedure. Previous studies found that GnRH agonists and antagonists acting through GnRH receptors led to cell death and decreased extracellular synthesis in cultured leiomyoma cells. In this study, we encapsulated the GnRH antagonist ganirelix in PLGA microspheres contained in an alginate scaffold that also supports a leiomyoma ex vivo tissue explant. Microspheres maintained ganirelix concentration stably during six days of culture, inducing significant cell death in 50-55% of tumor cells. Although no changes were observed in the expression of extracellular matrix genes, a decreased expression of the Nuclear Factor of Activated T cells 5, a transcription factor involved in osmotic stress and tumor size. Interestingly, all tumors analyzed experienced apoptosis independently of the original driver mutation. These data indicate that local therapy of ganirelix would induce tumor reduction in a wide range of uterine leiomyomas.


Subject(s)
Leiomyoma , Uterine Neoplasms , Humans , Female , Delayed-Action Preparations , Leiomyoma/metabolism , Gonadotropin-Releasing Hormone/pharmacology , Hormone Antagonists/pharmacology , Hormone Antagonists/therapeutic use , Uterine Neoplasms/pathology
7.
J Nanobiotechnology ; 20(1): 462, 2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36309688

ABSTRACT

Osteoporosis (OP) is characterized by a loss in bone mass and mineral density. The stimulation of the canonical Wnt/ß-catenin pathway has been reported to promote bone formation, this pathway is controlled by several regulators as secreted frizzled-related protein-1 (Sfrp-1), antagonist of the pathway. Thus, Sfrp-1 silencing therapies could be suitable for enhancing bone growth. However, the systemic stimulation of Wnt/ß-catenin has been correlated with side effects. This work hypothesizes the administration of lipid-polymer NPs (LPNPs) functionalized with a MSC specific aptamer (Apt) and carrying a SFRP1 silencing GapmeR, could favor bone formation in OP with minimal undesired effects. Suitable SFRP1 GapmeR-loaded Apt-LPNPs (Apt-LPNPs-SFRP1) were administered in osteoporotic mice and their biodistribution, toxicity and bone induction capacity were evaluated. The aptamer functionalization of the NPs modified their biodistribution profile showing a four-fold increase in the bone accumulation and a ten-fold decrease in the hepatic accumulation compared to naked LPNPs. Moreover, the histological evaluation revealed evident changes in bone structure observing a more compact trabecular bone and a cortical bone thickness increase in the Apt-LPNPs-SFRP1 treated mice with no toxic effects. Therefore, these LPNPs showed suitable properties and biodistribution profiles leading to an enhancement on the bone density of osteoporotic mice.


Subject(s)
Nanoparticles , beta Catenin , Mice , Animals , beta Catenin/metabolism , Bone Density/physiology , Tissue Distribution , Nanoparticles/chemistry , Polymers/chemistry
8.
Org Lett ; 24(31): 5860-5865, 2022 Aug 12.
Article in English | MEDLINE | ID: mdl-35913827

ABSTRACT

Reaction of BCl3 with suitably substituted o-alkynylanilines promotes a cascade reaction in which BN-polycyclic compounds are obtained via the formation of two new cycles and three new bonds in a single operational step. The reaction is highly efficient and takes place at room temperature, providing a very mild and straightforward strategy for the preparation of BN-aromatic compounds, which can be further transformed into a variety of BN-PAHs with different polycyclic cores and substituents.

9.
Int J Pharm ; 624: 121973, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35811041

ABSTRACT

Lipid-polymer hybrid nanoparticles are promising platforms in the field of targeted drug delivery, integrating the positive features of polymeric and lipid nanocarriers. However, the use of bulk procedures in lipid-polymer hybrid nanoparticles formulation is hindering their large-scale manufacturing. Therefore, the aim of this study is to explore the suitability of alternative formulation methods, such as microfluidics, to obtain surface-tunable nanoparticles displaying suitable characteristics. Formulations were prepared by single-step nanoprecipitation or using a micromixer chip. The nanocarriers were then surface-modified with an aptamer and an antibody, two common nanoparticle vectorization strategies, developing an optimized functionalization protocol. Both naked and surface-modified nanoparticles were characterized in terms of size, polydispersity, zeta potential and morphology. Moreover, the aptamer/antibody association efficiency was also determined. Nano-sized monodisperse nanoparticles, exhibiting a spherical core-shell structure, were obtained through both procedures. Furthermore, all the nanocarriers were successfully functionalized, showing association efficiency values above 70%. Interestingly, microfluidic-based nanoparticles displayed a smaller size and a more positive zeta potential than those prepared by single-step nanoprecipitation. Outcomes suggest both techniques led to lipid-polymer hybrid nanoparticles displaying a similar functionalization efficiency. Conversely, the microfluidic approach provided an improved control over critical parameters, as particle size or charge, constituting an interesting alternative to traditional formulation procedures.


Subject(s)
Nanoparticles , Polymers , Drug Carriers/chemistry , Drug Delivery Systems/methods , Lipids/chemistry , Nanoparticles/chemistry , Particle Size , Polymers/chemistry
10.
Int J Pharm ; 623: 121895, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35691524

ABSTRACT

Bone tissue engineering has come on the scene to overcome the difficulties of the current treatment strategies. By combining biomaterials, active agents and growth factors, cells and nanomaterials, tissue engineering makes it possible to create new structures that enhance bone regeneration. Herein, hyaluronic acid and alginate were used to create biologically active hydrogels, and montmorillonite nanoclay was used to reinforce and stabilize them. The developed scaffolds were found to be biocompatible and osteogenic with mMSCs in vitro, especially those reinforced with the nanoclay, and allowed mineralization even in the absence of differentiation media. Moreover, an in vivo investigation was performed to establish the potential of the hydrogels to mend bone and act as cell-carriers and delivery platforms for SDF-1. Scaffolds embedded with SDF-1 exhibited the highest percentages of bone regeneration as well as of angiogenesis, which confirms the suitability of the scaffolds for bone. Although there are a number of obstacles to triumph over, these bioengineered structures showed potential as future bone regeneration treatments.


Subject(s)
Alginates , Tissue Engineering , Alginates/chemistry , Biocompatible Materials/chemistry , Bone Regeneration , Bone and Bones , Cell Differentiation , Hydrogels/chemistry , Osteogenesis , Tissue Scaffolds/chemistry
11.
Eur J Transl Myol ; 32(2)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35727218

ABSTRACT

Among patients affected by the virus COVID-19, physicians have observed ventilation disorders. It is relevant to assess neurological involvement, including the role of diaphragmatic function. Its possible impairment could be related to the systemic inflammatory response and disease progression that both typify COVID-19 infection. We distinguished two groups (severe group (SG) and mild group (MG)) according to the severity of respiratory symptomatology. We performed neurophysiological and sonography studies to evaluate the diaphragmatic function. Regarding the sonography variables, we identified statistically significant differences in the right mean diaphragmatic thickness along with the expiration, showing 1.56 mm (SEM: 0.11) in the SG vs 1.92 mm (SEM: 0.19) in the MG (p = 0.042). The contractibility of both hemidiaphragms was 15% lower in the severe group, though this difference is not statistically significant. In our examination of the neurophysiological variables, in the amplitude responses, we observed a greater difference between responses from both phrenic nerves as follows: the raw differences in amplitude were 0.40 µV (SEM: 0.14) in the SG vs 0.35 µV (SEM: 0.19) in the MG and the percentage difference was 25.92% (SEM: 7.22) in the SG vs 16.28% (SEM: 4.38%) in the MG. Although diaphragmatic dysfunction is difficult to detect, our combined functional and morphological approach with phrenic electroneurograms and chest ultrasounds could improve diagnostic sensitivity. We suggest that diaphragmatic dysfunction could play a relevant role in respiratory disturbance in hospitalised patients with severe COVID-19.

12.
Angew Chem Int Ed Engl ; 61(28): e202205651, 2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35510716

ABSTRACT

Metal-free borylative cyclization of biphenyl-embedded 1,3,5-trien-7-ynes in the presence of simple and inexpensive BCl3 provided synthetically useful borylated building blocks. The outcome of the process depends on the reaction temperature, with borylated phenanthrenes obtained at 60 °C and phenanthrene-fused borylated cyclobutanes formed at 0 °C. Based on DFT calculations, a mechanism for these novel transformations has been proposed, which involves an uncommon skeletal rearrangement, including migration of a methyl group and alkyne fragmentation, unprecedented in BCl3 -promoted cyclization reactions.

13.
Biomed Pharmacother ; 147: 112631, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35033947

ABSTRACT

Norzoanthamine (NZ), an alkaloid that has been isolated from the marine cnidiaria Zoanthus sp., has been shown an interesting anti-osteoporotic activity. Although its mechanism of action is not yet clear, it seems that it is different from those of currently used drugs making it particularly interesting. Previous studies have been carried out mostly in vitro. Herein, we present an in vivo study that allows to check the real potential of NZ as a protector substance by direct application into ovariectomized rat bone using a sustained delivery system. Histological and histomorphometric results in ovariectomized rats showed higher bone quality as a result of greater number of trabeculae and osteogenic activity in the group implanted with NZ, compared to controls. In contrast with the untreated controls, NZ-treated groups showed a balanced osteoblast/osteoclast number ratio, similar to that found in the normal bone. These results suggest that NZ could be useful as adjunct to other osteoporosis treatments, but probably its main therapeutic role would be as preventive therapy against bone deterioration.


Subject(s)
Alkaloids/pharmacology , Azepines/pharmacology , Biological Products/pharmacology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Osteoporosis/pathology , Quinolines/pharmacology , Animals , Bone Density/drug effects , Disease Models, Animal , Drug Liberation , Female , Microspheres , Osteoblasts/drug effects , Osteoclasts/drug effects , Ovariectomy , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Rats , Rats, Sprague-Dawley
14.
J Org Chem ; 86(23): 16259-16267, 2021 12 03.
Article in English | MEDLINE | ID: mdl-34806882

ABSTRACT

Previously unknown 1,10a-dihydro-1-aza-10a-boraphenanthrene and 6a,7-dihydro-7-aza-6a-boratetraphene have been efficiently synthesized. Bromination of these BN-PAHs proceeds with complete regioselectivity, resulting in the formation of different substituted derivatives via cross-coupling reactions. These compounds exhibit rather high fluorescence quantum yields (up to ϕF = 0.80).


Subject(s)
Polycyclic Aromatic Hydrocarbons , Coloring Agents , Fluorescence
15.
Pharmaceutics ; 13(8)2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34452242

ABSTRACT

Mesenchymal stem cell (MSC) transplantation has emerged as a promising approach for bone regeneration. Importantly, the beneficial effects of MSCs can be improved by modulating the expression levels of specific genes to stimulate MSC osteogenic differentiation. We have previously shown that Smurf1 silencing by using Locked Nucleic Acid-Antisense Oligonucleotides, in combination with a scaffold that sustainably releases low doses of BMP-2, was able to increase the osteogenic potential of MSCs in the presence of BMP-2 doses significantly smaller than those currently used in the clinic. This would potentially allow an important reduction in this protein in MSs-based treatments, and thus of the side effects linked to its administration. We have further improved this system by specifically targeting the Wnt pathway modulator Sfrp1. This approach not only increases MSC bone regeneration efficiency, but is also able to induce osteogenic differentiation in osteoporotic human MSCs, bypassing the need for BMP-2 induction, underscoring the regenerative potential of this system. Achieving successful osteogenesis with the sole use of LNA-ASOs, without the need of administering pro-osteogenic factors such as BMP-2, would not only reduce the cost of treatments, but would also open the possibility of targeting these LNA-ASOs specifically to MSCs in the bone marrow, allowing us to treat systemic bone loss such as that associated with osteoporosis.

16.
Pharmaceutics ; 13(7)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209593

ABSTRACT

Biomaterials-mediated bone formation in osteoporosis (OP) is challenging as it requires tissue growth promotion and adequate mineralization. Based on our previous findings, the development of scaffolds combining bone morphogenetic protein 2 (BMP-2) and matrix metalloproteinase 10 (MMP-10) shows promise for OP management. To test our hypothesis, scaffolds containing BMP-2 + MMP-10 at variable ratios or BMP-2 + Alendronate (ALD) were prepared. Systems were characterized and tested in vitro on healthy and OP mesenchymal stem cells and in vivo bone formation was studied on healthy and OP animals. Therapeutic molecules were efficiently encapsulated into PLGA microspheres and embedded into chitosan foams. The use of PLGA (poly(lactic-co-glycolic acid)) microspheres as therapeutic molecule reservoirs allowed them to achieve an in vitro and in vivo controlled release. A beneficial effect on the alkaline phosphatase activity of non-OP cells was observed for both combinations when compared with BMP-2 alone. This effect was not detected on OP cells where all treatments promoted a similar increase in ALP activity compared with control. The in vivo results indicated a positive effect of the BMP-2 + MMP-10 combination at both of the doses tested on tissue repair for OP mice while it had the opposite effect on non-OP animals. This fact can be explained by the scaffold's slow-release rate and degradation that could be beneficial for delayed bone regeneration conditions but had the reverse effect on healthy animals. Therefore, the development of adequate scaffolds for bone regeneration requires consideration of the tissue catabolic/anabolic balance to obtain biomaterials with degradation/release behaviors suited for the existing tissue status.

17.
Drug Deliv Transl Res ; 11(2): 598-607, 2021 04.
Article in English | MEDLINE | ID: mdl-33625680

ABSTRACT

Gene therapy has emerged as a tool for the treatment of systemic metabolic disorders as osteoporosis (OP). However, the design of a suitable vehicle able to efficiently load and release the genetic material on the target cells is still a challenge. Moreover, the internalization pathway of nanosystems has been described to be dependent on their surface characteristics and the cell type evaluated. In this study, we aim at obtaining PEGylated lipid-PLGA nanoparticles (NPs) with variable surface charge able to incorporate GapmeRs (single-strand antisense oligonucleotides) for OP treatment. Nanoparticles showing negative, positive, and neutral surface charge were obtained by modulating the lipid composition. All formulations showed a remarkably low polydispersity index with adequate size. NPs were loaded with GapmeRs showing a high encapsulation efficiency and a surface charge-independent oligonucleotide loading. All the formulations were adequately internalized by MSCs. Future experiments will be devoted to use the developed formulations to clarify if the intracellular distribution of hybrid NPs on mesenchymal stem cells (MSCs) is dependent on surface charge. This portfolio of NPs will serve as a tool to analyze the effect of NP surface charge on gene therapy efficiency.


Subject(s)
Nanoparticles , Polymers , Drug Carriers , Genetic Therapy , Lipids , Oligonucleotides , Particle Size
18.
Org Lett ; 22(21): 8464-8469, 2020 Nov 06.
Article in English | MEDLINE | ID: mdl-32969663

ABSTRACT

Readily available o'-alkenyl-o-alkynylbiaryls, a particular type of 1,7-enynes, undergo a selective cycloisomerization reaction in the presence of a gold(I) catalyst to give interesting phenanthrene and dihydrophenanthrene derivatives in high yields. The solvent used provokes a switch in the evolution of the gold intermediate and plays a key role in the reaction outcome.

19.
Mater Sci Eng C Mater Biol Appl ; 115: 111009, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32600680

ABSTRACT

In the present study, two different PLGA-Alginate scaffolds, a hydrogel (HY) and a solid sponge (SS), were developed for ß-estradiol and BMP-2 sustained delivery for bone regeneration in osteoporosis. ß-Estradiol and BMP-2 were encapsulated in PLGA and PLGA-Alginate microspheres respectively. Scaffolds were characterized in vitro in terms of porosity, water uptake, release rate and HY rheological properties. BMP-2 release profiles were also analysed in vivo. The bone regeneration induced by both HY and SS was evaluated using a critical-sized bone defect in an osteoporotic (OP) rat model. Compared to HY, SS presented 30% higher porosity, more than double water absorption capacity and almost negligible mass loss compared to the 40% of HY. Both systems were flexible and fit well the defect shape, however, HY has the advantage of being injectable. Despite both delivery systems had similar composition and release profile, bone repair was around 30% higher with SS than with HY, possibly due to its longer residence time at the defect site. The incorporation of mesenchymal stem cells obtained from OP rats did not result in any improvement or synergistic effect on bone repair.


Subject(s)
Bone Morphogenetic Protein 2/administration & dosage , Estradiol/administration & dosage , Hydrogels/chemistry , Osteoporosis/drug therapy , Porifera/chemistry , Alginates/chemistry , Animals , Bone Morphogenetic Protein 2/chemistry , Bone Morphogenetic Protein 2/pharmacology , Bone Regeneration/drug effects , Cells, Cultured , Delayed-Action Preparations , Disease Models, Animal , Estradiol/chemistry , Estradiol/pharmacology , Female , Injections , Microspheres , Osteoporosis/etiology , Rats , Tissue Scaffolds/chemistry
20.
Chem Commun (Camb) ; 56(25): 3669-3672, 2020 Mar 28.
Article in English | MEDLINE | ID: mdl-32115593

ABSTRACT

Previously unknown 4a-aza-12a-borachrysene has been synthesized in only four steps. The reactions of this BN-embedded PAH with bromine and organolithium compounds proceed with complete regioselectivity, resulting in the formation of nine derivatives. One of these, a phenylalkynyl-substituted derivative, exhibits a remarkably high fluorescence quantum yield (ΦF = 0.68).

SELECTION OF CITATIONS
SEARCH DETAIL
...