Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Type of study
Language
Publication year range
1.
Behav Brain Res ; 443: 114329, 2023 04 12.
Article in English | MEDLINE | ID: mdl-36746310

ABSTRACT

BACKGROUND: The tremor mutant mice present motor impairments comprised of whole-body tremors, ataxia, decreased exploratory behavior, and audiogenic seizures. OBJECTIVES: This study aims to investigate the development of motor dysfunction in this mutant mouse and the relationships with cortical, striatal, and cerebellar levels of GABA, glutamate, glycine, dopamine (DA), serotonin (5-HT), noradrenaline (NOR), and its metabolites. The serum cytokines levels, myelin content, and the astrocytic expression of the glial fibrillary acidic protein (GFAP) investigated the possible influence of inflammation in motor dysfunction. RESULTS: Relative to wild-type (WT) mice, the tremor mice presented: increased tremors and bradykinesia associated with postural instability, decreased range of motion, and difficulty in initiating voluntary movements directly proportional to age; reduced step length for right and left hindlimbs; reduced cortical GABA, glutamate and, aspartate levels, the DOPAC/DA and ratio and increased the NOR levels; in the striatum, the levels of glycine and aspartate were reduced while the HVA levels, the HVA/DA and 5HIAA/5-HT ratios increased; in the cerebellum the glycine, NOR and 5-HIAA levels increased. CONCLUSIONS: We suggest that the motor disturbances resulted mainly from the activation of the indirect striatal inhibitory pathway to the frontal cortex mediated by GABA, glutamate, and aspartate, reducing the dopaminergic activity at the prefrontal cortex, which was associated with the progressive tremor. The reduced striatal and increased cerebellar glycine levels could be partially responsible for the mutant tremor motor disturbances.


Subject(s)
Motor Disorders , Tremor , Mice , Animals , Tremor/metabolism , Serotonin/metabolism , Aspartic Acid/metabolism , Seizures/metabolism , Dopamine/metabolism , Glutamic Acid/metabolism , Corpus Striatum/metabolism , Norepinephrine/metabolism , Neurotransmitter Agents/metabolism , gamma-Aminobutyric Acid/metabolism , Glycine/metabolism
2.
Behav Brain Res, v. 443, 114329, abr. 2023
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4794

ABSTRACT

Background The tremor mutant mice present motor impairments comprised of whole-body tremors, ataxia, decreased exploratory behavior, and audiogenic seizures. Objectives This study aims to investigate the development of motor dysfunction in this mutant mouse and the relationships with cortical, striatal, and cerebellar levels of GABA, glutamate, glycine, dopamine (DA), serotonin (5-HT), noradrenaline (NOR), and its metabolites. The serum cytokines levels, myelin content, and the astrocytic expression of the glial fibrillary acidic protein (GFAP) investigated the possible influence of inflammation in motor dysfunction. Results Relative to wild-type (WT) mice, the tremor mice presented: increased tremors and bradykinesia associated with postural instability, decreased range of motion, and difficulty in initiating voluntary movements directly proportional to age; reduced step length for right and left hindlimbs; reduced cortical GABA, glutamate and, aspartate levels, the DOPAC/DA and ratio and increased the NOR levels; in the striatum, the levels of glycine and aspartate were reduced while the HVA levels, the HVA/DA and 5HIAA/5-HT ratios increased; in the cerebellum the glycine, NOR and 5-HIAA levels increased. Conclusions We suggest that the motor disturbances resulted mainly from the activation of the indirect striatal inhibitory pathway to the frontal cortex mediated by GABA, glutamate, and aspartate, reducing the dopaminergic activity at the prefrontal cortex, which was associated with the progressive tremor. The reduced striatal and increased cerebellar glycine levels could be partially responsible for the mutant tremor motor disturbances.

3.
Bio Protoc ; 10(7): e3568, 2020 Apr 05.
Article in English | MEDLINE | ID: mdl-33659538

ABSTRACT

Despite the great number of test batteries already known to assess the behavior of genetically modified and inbred strains of mice, only a few of them focus on basic neurological parameters. The purpose of the battery test proposed is to settle a specific methodology to characterize the phenotype of neurological disease models in mutant or genetically modified mice. This methodology is simple and efficient in order to analyze several parameters, including general activity, sensory nervous system, sensorimotor system, central nervous system and autonomous nervous system. This can aid the choice of specific additional tests as well as the determination of an interrelationship among phenotypic alterations observed. Although being efficient for a first analysis of a mouse model, interpretation of the results must be carefully made because phenotype manifestation may vary due to many parameters, including mouse strain, environmental and housing condition, animal-experimenter interaction, sample size and tests order. It is important to consider as a critical point if handling procedures are aversive. The results acquired with the analysis of 18 parameters together provide preliminary data to characterize mouse phenotype and helps selecting more specific tests.

SELECTION OF CITATIONS
SEARCH DETAIL
...