Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Cancer ; 126(8): 1168-1177, 2022 05.
Article in English | MEDLINE | ID: mdl-34969998

ABSTRACT

BACKGROUND: Improving cancer immunotherapy long-term clinical benefit is a major priority. It has become apparent that multiple axes of immune suppression restrain the capacity of T cells to provide anti-tumour activity including signalling through PD1/PD-L1 and LAG3/MHC-II. METHODS: CB213 has been developed as a fully human PD1/LAG3 co-targeting multi-specific Humabody composed of linked VH domains that avidly bind and block PD1 and LAG3 on dual-positive T cells. We present the preclinical primary pharmacology of CB213: biochemistry, cell-based function vs. immune-suppressive targets, induction of T cell proliferation ex vivo using blood obtained from NSCLC patients, and syngeneic mouse model anti-tumour activity. CB213 pharmacokinetics was assessed in cynomolgus macaques. RESULTS: CB213 shows picomolar avidity when simultaneously engaging PD1 and LAG3. Assessing LAG3/MHC-II or PD1/PD-L1 suppression individually, CB213 preferentially counters the LAG3 axis. CB213 showed superior activity vs. αPD1 antibody to induce ex vivo NSCLC patient T cell proliferation and to suppress tumour growth in a syngeneic mouse tumour model, for which both experimental systems possess PD1 and LAG3 suppressive components. Non-human primate PK of CB213 suggests weekly clinical administration. CONCLUSIONS: CB213 is poised to enter clinical development and, through intercepting both PD1 and LAG3 resistance mechanisms, may benefit patients with tumours escaping front-line immunological control.


Subject(s)
Antigens, CD/immunology , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Antigens, CD/metabolism , B7-H1 Antigen , Humans , Lung Neoplasms/drug therapy , Mice , Programmed Cell Death 1 Receptor , T-Lymphocytes , Lymphocyte Activation Gene 3 Protein
2.
Front Pharmacol ; 11: 441, 2020.
Article in English | MEDLINE | ID: mdl-32317979

ABSTRACT

Cancer immunotherapies targeting immune checkpoints such as programmed cell-death protein 1 (PD-1) and its ligand programmed cell-death 1 ligand 1 (PD-L1), are revolutionizing cancer treatment and transforming the practice of medical oncology. However, despite all the recent successes of this type of immunotherapies, most patients are still refractory and present either intrinsic resistance or acquired resistance. Either way, this is a major clinical problem and one of the most significant challenges in oncology. Therefore, the identification of biomarkers to predict clinical responses or for patient stratification by probability of response has become a clinical necessity. However, the mechanisms leading to PD-L1/PD-1 blockade resistance are still poorly understood. A deeper understanding of the basic mechanisms underlying resistance to cancer immunotherapies will provide insight for further development of novel strategies designed to overcome resistance and treatment failure. Here we discuss some of the major molecular mechanisms of resistance to PD-L1/PD-1 immune checkpoint blockade and argue whether tumor intrinsic or extrinsic factors constitute main determinants of response and resistance.

3.
EMBO Mol Med ; 11(7): e10293, 2019 07.
Article in English | MEDLINE | ID: mdl-31273938

ABSTRACT

The majority of lung cancer patients progressing from conventional therapies are refractory to PD-L1/PD-1 blockade monotherapy. Here, we show that baseline systemic CD4 immunity is a differential factor for clinical responses. Patients with functional systemic CD4 T cells included all objective responders and could be identified before the start of therapy by having a high proportion of memory CD4 T cells. In these patients, CD4 T cells possessed significant proliferative capacities, low co-expression of PD-1/LAG-3 and were responsive to PD-1 blockade ex vivo and in vivo. In contrast, patients with dysfunctional systemic CD4 immunity did not respond even though they had lung cancer-specific T cells. Although proficient in cytokine production, CD4 T cells in these patients proliferated very poorly, strongly co-upregulated PD-1/LAG-3, and were largely refractory to PD-1 monoblockade. CD8 immunity only recovered in patients with functional CD4 immunity. T-cell proliferative dysfunctionality could be reverted by PD-1/LAG-3 co-blockade. Patients with functional CD4 immunity and PD-L1 tumor positivity exhibited response rates of 70%, highlighting the contribution of CD4 immunity for efficacious PD-L1/PD-1 blockade therapy.


Subject(s)
B7-H1 Antigen/immunology , CD4-Positive T-Lymphocytes/immunology , Immunity, Cellular , Immunologic Memory , Immunotherapy , Lung Neoplasms , Neoplasm Proteins/immunology , Programmed Cell Death 1 Receptor/immunology , A549 Cells , Aged , CD4-Positive T-Lymphocytes/pathology , Female , Humans , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Male , Middle Aged
4.
Int J Mol Sci ; 20(7)2019 Apr 02.
Article in English | MEDLINE | ID: mdl-30986912

ABSTRACT

PD-L1 tumor expression is a widely used biomarker for patient stratification in PD-L1/PD-1 blockade anticancer therapies, particularly for lung cancer. However, the reliability of this marker is still under debate. Moreover, PD-L1 is widely expressed by many immune cell types, and little is known on the relevance of systemic PD-L1⁺ cells for responses to immune checkpoint blockade. We present two clinical cases of patients with non-small cell lung cancer (NSCLC) and PD-L1-negative tumors treated with atezolizumab that showed either objective responses or progression. These patients showed major differences in the distribution of PD-L1 expression within systemic immune cells. Based on these results, an exploratory study was carried out with 32 cases of NSCLC patients undergoing PD-L1/PD-1 blockade therapies, to compare PD-L1 expression profiles and their relationships with clinical outcomes. Significant differences in the percentage of PD-L1⁺ CD11b⁺ myeloid cell populations were found between objective responders and non-responders. Patients with percentages of PD-L1⁺ CD11b⁺ cells above 30% before the start of immunotherapy showed response rates of 50%, and 70% when combined with memory CD4 T cell profiling. These findings indicate that quantification of systemic PD-L1⁺ myeloid cell subsets could provide a simple biomarker for patient stratification, even if biopsies are scored as PD-L1 null.


Subject(s)
B7-H1 Antigen/antagonists & inhibitors , Biomarkers, Tumor/metabolism , Immunotherapy , Lung Neoplasms/immunology , Lung Neoplasms/therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , B7-H1 Antigen/metabolism , CD4-Positive T-Lymphocytes/metabolism , Female , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/drug therapy , Male , Middle Aged , Programmed Cell Death 1 Receptor/metabolism
5.
Article in English | MEDLINE | ID: mdl-30275987

ABSTRACT

Programmed cell death-1 ligand-1 (PD-L1) overexpression in cancer cells accelerates tumor progression. PD-L1 possesses two main pro-oncogenic functions. First, PD-L1 is a strong immunosuppressive molecule that inactivates tumor-specific T cells by binding to the inhibitory receptor PD-1. Second, PD-L1 function relies on the delivery of intrinsic intracellular signals that enhance cancer cell survival, regulate stress responses and confer resistance toward pro-apoptotic stimuli, such as interferons. Here, we review the current knowledge on intracellular signal transduction pathways regulated by PD-L1, describe its associated signalosome and discuss potential combinations of targeted therapies against the signalosome with PD-L1/PD-1 blockade therapies.

6.
Biomaterials ; 170: 95-115, 2018 07.
Article in English | MEDLINE | ID: mdl-29656235

ABSTRACT

Encouraging results are emerging from systems that exploit Toll like receptor (TLR) signaling, nanotechnology, checkpoint inhibition and molecular imaging for cancer immunotherapy. A major remaining challenge is developing effective, durable and tumour-specific immune responses without systemic toxicity. Here, we report a simple and versatile system based on synergistic activation of immune responses and direct cancer cell killing by combined TLR ligation using polyIC as TLR3 and imiquimod (R837) as TLR7 agonist, in combination with the model antigen ovalbumin (OVA) and phospholipid micelles loaded with zinc-doped iron oxide magnetic nanoparticles (MNPs). The combination of TLR agonists triggered a strong innate immune response in the lymph nodes (LNs) without systemic release of pro-inflammatory cytokines. The vaccines showed excellent efficacy against aggressive B16-F10 melanoma cells expressing OVA, which was improved with immune checkpoint abrogation of the immunosuppressive programmed death-ligand 1 (PD-L1) at the level of the cancer cells. By magnetic resonance (MR) and nuclear imaging we could track the vaccine migration from the site of injection to LNs and tumour. Overall, we show this synergistic TLR agonists and their combination with MNPs and immune checkpoint blockade to have considerable potential for preclinical and clinical development of vaccines for cancer immunotherapy.


Subject(s)
Imiquimod/pharmacology , Immunotherapy , Magnetite Nanoparticles/chemistry , Nanotechnology , Neoplasms/immunology , Neoplasms/therapy , Poly I-C/pharmacology , Animals , Antigen-Presenting Cells/drug effects , Antigen-Presenting Cells/metabolism , Cancer Vaccines/immunology , Cell Death/drug effects , Cell Line , Cell Line, Tumor , Cell Movement/drug effects , Drug Synergism , Endocytosis/drug effects , Endosomes/drug effects , Endosomes/metabolism , Imiquimod/therapeutic use , Immunity, Innate/drug effects , Immunization , Lymph Nodes/drug effects , Lymph Nodes/pathology , Melanoma/immunology , Melanoma/pathology , Melanoma/therapy , Mice, Inbred C57BL , Neoplasms/diagnosis , Neoplasms/pathology , Phospholipids/chemistry , Poly I-C/therapeutic use , Polyethylene Glycols/chemistry
7.
ACS Appl Mater Interfaces ; 8(10): 6344-53, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26909529

ABSTRACT

We report the preparation of microporous functional polymer surfaces that have been proven to be selective surfaces toward eukaryotic cells while maintaining antifouling properties against bacteria. The fabrication of functional porous films has been carried out by the breath figures approach that allowed us to create porous interfaces with either poly(ethylene glycol) methyl ether methacrylate (PEGMA) or 2,3,4,5,6-pentafluorostyrene (5FS). For this purpose, blends of block copolymers in a polystyrene homopolymer matrix have been employed. In contrast to the case of single functional polymer, using blends enables us to vary the chemical distribution of the functional groups inside and outside the formed pores. In particular, fluorinated groups were positioned at the edges while the hydrophilic PEGMA groups were selectively located inside the pores, as demonstrated by TOF-SIMS. More interestingly, studies of cell adhesion, growth, and proliferation on these surfaces confirmed that PEGMA functionalized interfaces are excellent candidates to selectively allow cell growth and proliferation while maintaining antifouling properties.


Subject(s)
Bacterial Adhesion , Hydrocarbons, Fluorinated/chemistry , Methacrylates/chemistry , Polyethylene Glycols/chemistry , Staphylococcus aureus/growth & development , Styrene/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...