Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 32(5): 055604, 2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33065556

ABSTRACT

Nanostructured hybrid materials (NHMs) are promising candidates to improve the performance of several materials in different applications. In the case of optoelectronic technologies, the ability to tune the optical absorption of such NHMs is an appealing feature. Along with the capacity to transform the absorbed light into charge carriers (CC), and their consequently efficient transport to the different electrodes. In this regard, NHM based on graphene-like structures and semiconductor QDs are appealing candidates, assuming the NHMs retain the light absorption and CC photogeneration properties of semiconductor QDs, and the excellent CC transport properties displayed by graphene-like materials. In the current work a solution-processed NHM using PbS quantum dots (QDs) and graphene oxide (GO) was fabricated in a layer-by-layer configuration by dip-coating. Afterwards, these NHMs were reduced by thermal or chemical methods. Reduction process had a direct impact on the final optoelectronic properties displayed by the NHMs. All reduced samples displayed a decrement in their resistivity, particularly the sample chemically reduced, displaying a 107 fold decrease; mainly attributed to N-doping in the reduced graphene oxide (rGO). The optical absorption coefficients also showed a dependence on the rGO's reduction degree, with reduced samples displaying higher values, and sample thermally reduced at 300 °C showing the highest absorption coefficient, due to the combined absorption of unaltered PbS QDs and the appearance of sp2 regions within rGO. The photogenerated current increased in most reduced samples, displaying the highest photocurrent the sample reduced at 400 °C, presenting a 2500-fold increment compared to the NHM before reduction, attributed to an enhanced CC transfer from PbS QDs to rGO, as a consequence of an improved band alignment between them. These results show clear evidence on how the optoelectronic properties of NHMs based on semiconductor nanoparticles and rGO, can be tuned based on their configuration and the reduction process parameters.

2.
Nanotechnology ; 30(39): 395601, 2019 Sep 27.
Article in English | MEDLINE | ID: mdl-31234156

ABSTRACT

In the present study core-shell PEDOT:PSS-polyvinylpirrolidone nanofibers were synthesized by coaxial electrospinning. These fibers were doped with different solvents (dimethylsulphoxide, dimethyl sulfoxide (DMSO), isopropyl alcohol (IPA), and ethylene glycol), and PbS nanoparticles at different concentrations; additionally, the coaxial electrospinning setup process was inverted in order to exchange the phases comprising the core-shell morphology. Experimental results showed that DMSO and IPA solvents produced a change in the PEDOT:PSS phase from its benzoid structure to a more conjugated (quinoid) one. The synthesized samples displayed an increment in the conductance of the composite nanofibers, based on a more conjugated structure of the PEDOT:PSS phase, and a better dispersion of the PbS nanoparticles within the nanofibers; this increment was, under certain synthesis conditions, up to three orders of magnitude higher than in the case of the nanofibers with no solvent, nor nanoparticles, added. Photoresponse also showed a clear increment in the value of the photogenerated current as the concentration of the nanoparticles increased. Inverting the arrangement of the core-shell phases in the nanofibers increased the conductance and the photogenerated current in the cases analyzed. These results show novel evidence on the capability of tuning the conductance and photoresponse of composite core-shell nanofibers, based on the doping of the PEDOT:PSS phase with different solvents and PbS nanoparticles, and the arrangement of the core-shell phases. Tailoring the optoelectronic properties of conductive, flexible nanofibers is a desirable competence in technological areas such as transparent flexible conductors, biosensors and tissue engineering.

SELECTION OF CITATIONS
SEARCH DETAIL
...