Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Phys Chem B ; 113(7): 2042-9, 2009 Feb 19.
Article in English | MEDLINE | ID: mdl-19173635

ABSTRACT

Cocrystals of cubane and fullerenes, C60-cubane and C70-cubane, show distinct rotational ordering transitions. We studied the corresponding structural changes with temperature-dependent X-ray diffraction and the thermodynamics of the phase transitions with adiabatic microcalorimetry and differential scanning calorimetry. C60-cubane has one phase transition around 130 K from a high-temperature fcc phase with freely rotating C60 to a low-temperature orthorombic phase in which the fullerene rotation is frozen. The corresponding enthalpy change is approximately 1170 J/mol, and the entropy change is 9.6 J/(mol K). C70-cubane has two phase transitions. Around 380 K, the high-temperature fcc phase with freely rotating C70 transforms into a bct phase in which the C70 rotates uniaxially around an axis that precesses around the c direction with a full opening angle of 40 degree. Around 170 K, the uniaxial rotation also freezes out, with an accompanying structural transition to monoclinic and enthalpy and entropy changes of 620 J/mol and 8.7 J/(mol K), respectively. The low-temperature specific heat was analyzed in terms of the Debye-Einstein model to estimate the librational energies of the fullerenes and Debye temperatures. We found very similar values for the two cocrystals, approximately Elib = 2.2 meV and TDebye = 23 K. For reference, we also measured the specific heats of pure C60 and C70 and found Elib = 2.96 meV and TDebye = 32 K for C60 and Elib = 1.9 meV and TDebye = 20 K for C70.


Subject(s)
Fullerenes/chemistry , Temperature , Calorimetry , Crystallization , Molecular Structure , Phase Transition , Rotation , Thermodynamics , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL