Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Children (Basel) ; 9(12)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36553282

ABSTRACT

BACKGROUND: To compare chest compression (CC) rates of 90/min with 180/min and their effect on the time to return of spontaneous circulation (ROSC), survival, hemodynamic, and respiratory parameters. We hypothesized that asphyxiated newborn piglets that received CC at 180/min vs. 90/min during cardiopulmonary resuscitation would have a shorter time to ROSC. METHODS: Newborn piglets (n = 7/group) were anesthetized, intubated, instrumented and exposed to 45 min normocapnic hypoxia followed by asphyxia and cardiac arrest. Piglets were randomly allocated to a CC rate of 180/min or 90/min. CC was performed using an automated chest compression machine using CC superimposed with sustained inflation. Hemodynamic and respiratory parameters and applied compression force were continuously measured. RESULTS: The mean (SD) time to ROSC was 91 (34) and 256 (97) s for CC rates of 180/min and 90/min, respectively (p = 0.08). The number of piglets that achieved ROSC was 7 (100%) and 5 (71%) with 180/min and 90/min CC rates, respectively (p = 0.46). Hemodynamic parameters (i.e., diastolic and mean blood pressure, carotid blood flow, stroke volume, end-diastolic volume, left ventricular contractile function) and respiratory parameters (i.e., minute ventilation, peak inflation and peak expiration flow) were all improved with a CC rate of 180/min. CONCLUSION: Time to ROSC and hemodynamic and respiratory parameters were not statistical significant different between CC rates of 90/min and 180/min. Higher CC rates during neonatal resuscitation warrant further investigation.

2.
Arch Dis Child Fetal Neonatal Ed ; 107(3): 262-268, 2022 May.
Article in English | MEDLINE | ID: mdl-34330756

ABSTRACT

AIM: The study aimed to examine the optimal anterior-posterior depth which will reduce the time to return of spontaneous circulation and improve survival during chest compressions. Asphyxiated neonatal piglets receiving chest compression resuscitated with a 40% anterior-posterior chest depth compared with 33%, 25% or 12.5% will have reduced time to return of spontaneous circulation and improved survival. METHODS: Newborn piglets (n=8 per group) were anaesthetised, intubated, instrumented and exposed to 45 min normocapnic hypoxia followed by asphyxia and cardiac arrest. Piglets were randomly allocated to four intervention groups ('anterior-posterior 12.5% depth', 'anterior-posterior 25% depth', 'anterior-posterior 33% depth' or 'anterior-posterior 40% depth'). Chest compressions were performed using an automated chest compression machine with a rate of 90 per minute. Haemodynamic and respiratory parameters, applied compression force, and chest compression depth were continuously measured. RESULTS: The median (IQR) time to return of spontaneous circulation was 600 (600-600) s, 135 (90-589) s, 85 (71-158)* s and 116 (63-173)* s for the 12.5%, 25%, 33% and 40% depth groups, respectively (*p<0.001 vs 12.5%). The number of piglets that achieved return of spontaneous circulation was 0 (0%), 6 (75%), 7 (88%) and 7 (88%) in the 12.5%, 25%, 33% and 40% anterior-posterior depth groups, respectively. Arterial blood pressure, central venous pressure, carotid blood flow, applied compression force, tidal volume and minute ventilation increased with greater anterior-posterior chest depth during chest compression. CONCLUSIONS: Time to return of spontaneous circulation and survival were similar between 25%, 33% and 40% anterior-posterior depths, while 12.5% anterior-posterior depth did not result in return of spontaneous circulation or survival. Haemodynamic and respiratory parameters improved with increasing anterior-posterior depth, suggesting improved organ perfusion and oxygen delivery with 33%-40% anterior-posterior depth. TRIAL REGISTRATION NUMBER: PTCE0000193.


Subject(s)
Asphyxia Neonatorum , Cardiopulmonary Resuscitation , Animals , Animals, Newborn , Disease Models, Animal , Humans , Infant, Newborn , Recovery of Function , Swine
3.
JMIR Serious Games ; 8(4): e21855, 2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33346741

ABSTRACT

BACKGROUND: Neonatal resuscitation involves a complex sequence of actions to establish an infant's cardiorespiratory function at birth. Many of these responses, which identify the best action sequence in each situation, are taught as part of the recurrent Neonatal Resuscitation Program training, but they have a low incidence in practice, which leaves health care providers (HCPs) less prepared to respond appropriately and efficiently when they do occur. Computer-based simulators are increasingly used to complement traditional training in medical education, especially in the COVID-19 pandemic era of mass transition to digital education. However, it is not known how learners' attitudes toward computer-based learning and assessment environments influence their performance. OBJECTIVE: This study explores the relation between HCPs' attitudes toward a computer-based simulator and their performance in the computer-based simulator, RETAIN (REsuscitation TrAINing), to uncover the predictors of performance in computer-based simulation environments for neonatal resuscitation. METHODS: Participants were 50 neonatal HCPs (45 females, 4 males, 1 not reported; 16 respiratory therapists, 33 registered nurses and nurse practitioners, and 1 physician) affiliated with a large university hospital. Participants completed a demographic presurvey before playing the game and an attitudinal postsurvey after completing the RETAIN game. Participants' survey responses were collected to measure attitudes toward the computer-based simulator, among other factors. Knowledge on neonatal resuscitation was assessed in each round of the game through increasingly difficult neonatal resuscitation scenarios. This study investigated the moderating role of mindset on the association between the perceived benefits of understanding the terminology used in the computer-based simulator, RETAIN, and their performance on the neonatal resuscitation tasks covered by RETAIN. RESULTS: The results revealed that mindset moderated the relation between participants' perceived terminology used in RETAIN and their actual performance in the game (F3,44=4.56, R2=0.24, adjusted R2=0.19; P=.007; estimate=-1.19, SE=0.38, t44=-3.12, 95% CI -1.96 to -0.42; P=.003). Specifically, participants who perceived the terminology useful also performed better but only when endorsing more of a growth mindset; they also performed worse when endorsing more of a fixed mindset. Most participants reported that they enjoyed playing the game. The more the HCPs agreed that the terminology in the tutorial and in the game was accessible, the better they performed in the game, but only when they reported endorsing a growth mindset exceeding the average mindset of all the participants (F3,44=6.31, R2=0.30, adjusted R2=0.25; P=.001; estimate=-1.21, SE=0.38, t44=-3.16, 95% CI -1.99 to -0.44; P=.003). CONCLUSIONS: Mindset moderates the strength of the relationship between HCPs' perception of the role that the terminology employed in a game simulator has on their performance and their actual performance in a computer-based simulator designed for neonatal resuscitation training. Implications of this research include the design and development of interactive learning environments that can support HCPs in performing better on neonatal resuscitation tasks.

4.
Neonatology ; 117(1): 102-110, 2020.
Article in English | MEDLINE | ID: mdl-31896112

ABSTRACT

BACKGROUND: In previous piglet experiments of profound asphyxia and cardiac arrest, recovery was similar when 21 and 100% oxygen were used for positive pressure ventilation (PPV). There was no consistent reduction in inflammation and oxidative stress in piglets ventilated with 21 or 100% oxygen. OBJECTIVES: We aimed to investigate hypoxic resuscitation, i.e., PPV with 18% oxygen, in profoundly asphyxiated piglets with cardiac arrest. We hypothesized that resuscitation with 18% oxygen would result in less inflammation and oxidative stress compared to 21 or 100% oxygen. METHOD: Twenty-four piglets were exposed to 30 min of normocapnic hypoxia followed by asphyxia until asystole. The piglets were randomized to PPV with 18% oxygen (n = 8), 21% oxygen (n = 8), or 100% oxygen (n = 8), and resuscitated with chest compressions and intravenous epinephrine. Return of spontaneous circulation (ROSC) was defined as an unassisted heart rate ≥100 bpm for 15 s. Lactate, GSH (total glutathione), GSSG (oxidized glutathione), and GSSG/GSH ratio were measured in myocardial and frontoparietal cortex homogenates. Interleukin (IL)-8, IL-6, IL-1ß and tumor necrosis factor α were measured in frontoparietal cortex homogenates. RESULTS: There was no difference in time to ROSC or inflammation and oxidative stress in the 3 oxygen groups. CONCLUSIONS: Resuscitation with 18% oxygen did not result in differences in inflammation and oxidative stress when compared to 21 or 100% oxygen.


Subject(s)
Cardiopulmonary Resuscitation , Heart Arrest/physiopathology , Oxidative Stress , Oxygen/administration & dosage , Positive-Pressure Respiration/methods , Animals , Animals, Newborn , Asphyxia , Disease Models, Animal , Heart Massage , Hemodynamics , Hypoxia/physiopathology , Random Allocation , Swine
5.
Children (Basel) ; 6(1)2019 Jan 03.
Article in English | MEDLINE | ID: mdl-30609872

ABSTRACT

Annually, an estimated 13⁻26 million newborns need respiratory support and 2⁻3 million newborns need extensive resuscitation, defined as chest compression and 100% oxygen with or without epinephrine in the delivery room. Despite such care, there is a high incidence of mortality and neurologic morbidity. The poor prognosis associated with receiving chest compression alone or with medications in the delivery room raises questions as to whether improved cardiopulmonary resuscitation methods specifically tailored to the newborn could improve outcomes. This review discusses the current recommendations, mode of action, different compression to ventilation ratios, continuous chest compression with asynchronous ventilations, chest compression and sustained inflation optimal depth, and oxygen concentration during cardiopulmonary resuscitation.

6.
Front Pediatr ; 6: 400, 2018.
Article in English | MEDLINE | ID: mdl-30619794

ABSTRACT

Background: International consensus statements for resuscitation of newborn infants recommend provision of 100% oxygen once chest compressions are required. However, 100% oxygen exacerbates reperfusion injury and reduces cerebral perfusion in newborn babies. Objective: We aimed to establish whether resuscitation with air during chest compression is feasible and safe in newborn infants compared with 100% oxygen. Methods: Systematic search of PubMed, Google Scholar and CINAHL for articles examining variable oxygen concentrations during chest compressions in term newborns. Results: Overall, no human studies but eight animal studies (n = 323 animals) comparing various oxygen concentrations during chest compression were identified. The pooled analysis showed no difference in mortality rates for animals resuscitated with air vs. 100% oxygen (risk ratio 1.04 [0.35, 3.08], I2 = 0%, p = 0.94). ROSC was also similar between groups with a mean difference of -3.8 [-29.7-22] s, I2 = 0%, p = 0.77. No difference in oxygen damage or adverse events were identified between groups. Conclusions: Air had similar time to ROSC and mortality as 100% oxygen during neonatal chest compression. A large randomized controlled clinical trial comparing air vs. 100% oxygen during neonatal chest compression is warranted.

SELECTION OF CITATIONS
SEARCH DETAIL
...