Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 13: 937466, 2022.
Article in English | MEDLINE | ID: mdl-35935196

ABSTRACT

Chronic staphylococcal osteomyelitis can persist for long time periods causing bone destruction. The ability of Staphylococcus aureus to develop chronic infections is linked to its capacity to invade and replicate within osteoblasts and osteocytes and to switch to a dormant phenotype called small colony variants. Recently, osteocytes were described as a main reservoir for this pathogen in bone tissue. However, the mechanisms involved in the persistence of S. aureus within these cells are still unknown. Here, we investigated the interaction between S. aureus and osteoblasts or osteocytes during infection. While osteoblasts are able to induce a strong antimicrobial response and eliminate intracellular S. aureus, osteocytes trigger signals to recruit immune cells and enhance inflammation but fail an efficient antimicrobial activity to clear the bacterial infection. Moreover, we found that extracellular signals from osteocytes enhance intracellular bacterial clearance by osteoblasts. Even though both cell types express Toll-like receptor (TLR) 2, the main TLR responsible for S. aureus detection, only osteoblasts were able to increase TLR2 expression after infection. Additionally, proteomic analysis indicates that reduced intracellular bacterial killing activity in osteocytes is related to low antimicrobial peptide expression. Nevertheless, high levels of lipid mediators and cytokines were secreted by osteocytes, suggesting that they can contribute to inflammation. Taken together, our results demonstrate that osteocytes contribute to severe inflammation observed in osteomyelitis and represent the main niche for S. aureus persistence due to their poor capacity for intracellular antimicrobial response.

2.
Front Immunol ; 12: 607217, 2021.
Article in English | MEDLINE | ID: mdl-33767693

ABSTRACT

Large clinical trials testing hydrocortisone therapy in septic shock have produced conflicting results. Subgroups may benefit of hydrocortisone treatment depending on their individual immune response. We performed an exploratory analysis of the database from the international randomized controlled clinical trial Corticosteroid Therapy of Septic Shock (CORTICUS) employing machine learning to a panel of 137 variables collected from the Berlin subcohort comprising 83 patients including demographic and clinical measures, organ failure scores, leukocyte counts and levels of circulating cytokines. The identified theranostic marker was validated against data from a cohort of the Hellenic Sepsis Study Group (HSSG) (n = 246), patients enrolled in the clinical trial of Sodium Selenite and Procalcitonin Guided Antimicrobial Therapy in Severe Sepsis (SISPCT, n = 118), and another, smaller clinical trial (Crossover study, n = 20). In addition, in vitro blood culture experiments and in vivo experiments in mouse models were performed to assess biological plausibility. A low serum IFNγ/IL10 ratio predicted increased survival in the hydrocortisone group whereas a high ratio predicted better survival in the placebo group. Using this marker for a decision rule, we applied it to three validation sets and observed the same trend. Experimental studies in vitro revealed that IFNγ/IL10 was negatively associated with the load of (heat inactivated) pathogens in spiked human blood and in septic mouse models. Accordingly, an in silico analysis of published IFNγ and IL10 values in bacteremic and non-bacteremic patients with the Systemic Inflammatory Response Syndrome supported this association between the ratio and pathogen burden. We propose IFNγ/IL10 as a molecular marker supporting the decision to administer hydrocortisone to patients in septic shock. Prospective clinical studies are necessary and standard operating procedures need to be implemented, particularly to define a generic threshold. If confirmed, IFNγ/IL10 may become a suitable theranostic marker for an urging clinical need.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Hydrocortisone/therapeutic use , Interferon-gamma/blood , Interleukin-10/blood , Shock, Septic/blood , Shock, Septic/drug therapy , Adult , Aged , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/adverse effects , Biomarkers , Clinical Decision-Making , Disease Management , Disease Models, Animal , Female , Hemodynamics , Humans , Hydrocortisone/administration & dosage , Hydrocortisone/adverse effects , Lactic Acid/blood , Male , Mice , Middle Aged , Norepinephrine , Odds Ratio , Prognosis , Propensity Score , Shock, Septic/diagnosis , Shock, Septic/mortality , Treatment Outcome
3.
Toxins (Basel) ; 11(12)2019 12 17.
Article in English | MEDLINE | ID: mdl-31861176

ABSTRACT

Staphylococcus aureus is a facultative pathogenic bacterium that colonizes the nasopharyngeal area of healthy individuals, but can also induce severe infection, such as pneumonia. Pneumonia caused by mono- or superinfected S.aureus leads to high mortality rates. To establish an infection, S. aureus disposes of a wide variety of virulence factors, which can vary between clinical isolates. Our study aimed to characterize pneumonia isolates for their virulent capacity. For this, we analyzed isolates from colonization, pneumonia due to S. aureus, and pneumonia due to S. aureus/influenza virus co-infection. A total of 70 strains were analyzed for their virulence genes and the host-pathogen interaction was analyzed through functional assays in cell culture systems. Strains from pneumonia due to S. aureus mono-infection showed enhanced invasion and cytotoxicity against professional phagocytes than colonizing and co-infecting strains. This corresponded to the high presence of cytotoxic components in pneumonia strains. By contrast, strains obtained from co-infection did not exhibit these virulence characteristics and resembled strains from colonization, although they caused the highest mortality rate in patients. Taken together, our results underline the requirement of invasion and toxins to cause pneumonia due to S. aureus mono-infection, whereas in co-infection even low-virulent strains can severely aggravate pneumonia.


Subject(s)
Coinfection/virology , Influenza, Human/virology , Pneumonia, Staphylococcal/virology , Staphylococcus aureus/genetics , Virulence/genetics , Adult , Aged , Aged, 80 and over , Exotoxins/genetics , Female , Humans , Male , Middle Aged , Peptide Hydrolases/genetics , Viral Proteins/genetics , Virulence Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...