Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Ann Oncol ; 34(2): 200-211, 2023 02.
Article in English | MEDLINE | ID: mdl-36423745

ABSTRACT

BACKGROUND: Post-treatment detection of circulating tumour DNA (ctDNA) in early-stage triple-negative breast cancer (TNBC) patients predicts high risk of relapse. c-TRAK TN assessed the utility of prospective ctDNA surveillance in TNBC and the activity of pembrolizumab in patients with ctDNA detected [ctDNA positive (ctDNA+)]. PATIENTS AND METHODS: c-TRAK TN, a multicentre phase II trial, with integrated prospective ctDNA surveillance by digital PCR, enrolled patients with early-stage TNBC and residual disease following neoadjuvant chemotherapy, or stage II/III with adjuvant chemotherapy. ctDNA surveillance comprised three-monthly blood sampling to 12 months (18 months if samples were missed due to coronavirus disease), and ctDNA+ patients were randomised 2 : 1 to intervention : observation. ctDNA results were blinded unless patients were allocated to intervention, when staging scans were done and those free of recurrence were offered pembrolizumab. A protocol amendment (16 September 2020) closed the observation group; all subsequent ctDNA+ patients were allocated to intervention. Co-primary endpoints were (i) ctDNA detection rate and (ii) sustained ctDNA clearance rate on pembrolizumab (NCT03145961). RESULTS: Two hundred and eight patients registered between 30 January 2018 and 06 December 2019, 185 had tumour sequenced, 171 (92.4%) had trackable mutations, and 161 entered ctDNA surveillance. Rate of ctDNA detection by 12 months was 27.3% (44/161, 95% confidence interval 20.6% to 34.9%). Seven patients relapsed without prior ctDNA detection. Forty-five patients entered the therapeutic component (intervention n = 31; observation n = 14; one observation patient was re-allocated to intervention following protocol amendment). Of patients allocated to intervention, 72% (23/32) had metastases on staging at the time of ctDNA+, and 4 patients declined pembrolizumab. Of the five patients who commenced pembrolizumab, none achieved sustained ctDNA clearance. CONCLUSIONS: c-TRAK TN is the first prospective study to assess whether ctDNA assays have clinical utility in guiding therapy in TNBC. Patients had a high rate of metastatic disease on ctDNA detection. Findings have implications for future trial design, emphasising the importance of commencing ctDNA testing early, with more sensitive and/or frequent ctDNA testing regimes.


Subject(s)
Antineoplastic Agents, Immunological , Circulating Tumor DNA , Neoplasm, Residual , Triple Negative Breast Neoplasms , Humans , Biomarkers, Tumor/blood , Mutation , Neoplasm Recurrence, Local/blood , Neoplasm Recurrence, Local/diagnosis , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/genetics , Prospective Studies , Triple Negative Breast Neoplasms/blood , Triple Negative Breast Neoplasms/diagnosis , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Neoplasm, Residual/blood , Neoplasm, Residual/diagnosis , Neoplasm, Residual/drug therapy , Neoplasm, Residual/genetics , Antineoplastic Agents, Immunological/therapeutic use , Circulating Tumor DNA/blood
2.
Ann Oncol ; 30(6): 945-952, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30860573

ABSTRACT

BACKGROUND: Dynamic changes in circulating tumour DNA (ctDNA) levels may predict long-term outcome. We utilised samples from a phase I/II randomised trial (BEECH) to assess ctDNA dynamics as a surrogate for progression-free survival (PFS) and early predictor of drug efficacy. PATIENTS AND METHODS: Patients with estrogen receptor-positive advanced metastatic breast cancer (ER+ mBC) in the BEECH study, paclitaxel plus placebo versus paclitaxel plus AKT inhibitor capivasertib, had plasma samples collected for ctDNA analysis at baseline and at multiple time points in the development cohort (safety run-in, part A) and validation cohort (randomised, part B). Baseline sample ctDNA sequencing identified mutations for longitudinal analysis and mutation-specific digital droplet PCR (ddPCR) assays were utilised to assess change in ctDNA abundance (allele fraction) between baseline and 872 on-treatment samples. Primary objective was to assess whether early suppression of ctDNA, based on pre-defined criteria from the development cohort, independently predicted outcome in the validation cohort. RESULTS: In the development cohort, suppression of ctDNA was apparent after 8 days of treatment (P = 0.014), with cycle 2 day 1 (4 weeks) identified as the optimal time point to predict PFS from early ctDNA dynamics. In the validation cohort, median PFS was 11.1 months in patients with suppressed ctDNA at 4 weeks and 6.4 months in patients with high ctDNA (hazard ratio = 0.20, 95% confidence interval 0.083-0.50, P < 0.0001). There was no difference in the level of ctDNA suppression between patients randomised to capivasertib or placebo overall (P = 0.904) nor in the PIK3CA mutant subpopulation (P = 0.071). Clonal haematopoiesis of indeterminate potential (CHIP) was evident in 30% (18/59) baseline samples, although CHIP had no effect on tolerance of chemotherapy nor on PFS. CONCLUSION: Early on-treatment ctDNA dynamics are a surrogate for PFS. Dynamic ctDNA assessment has the potential to substantially enhance early drug development. CLINICAL REGISTRATION NUMBER: NCT01625286.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Circulating Tumor DNA/blood , Paclitaxel/therapeutic use , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Breast Neoplasms/blood , Breast Neoplasms/pathology , Circulating Tumor DNA/genetics , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Cohort Studies , Double-Blind Method , Female , Follow-Up Studies , Humans , Neoplasm Metastasis , Paclitaxel/administration & dosage , Prognosis , Progression-Free Survival , Pyrimidines/administration & dosage , Pyrroles/administration & dosage , Randomized Controlled Trials as Topic , Survival Rate
3.
Eur J Cancer ; 103: 165-175, 2018 11.
Article in English | MEDLINE | ID: mdl-30253333

ABSTRACT

BACKGROUND: Conventional biomarkers in thyroid cancer are not disease specific and fluctuate in advanced disease, making interpretation difficult. Circulating tumour DNA (ctDNA) has been shown to be a useful biomarker in other solid tumours. This is a multimutational study of ctDNA over multiple timepoints, designed to test the hypothesis that ctDNA is a potential biomarker in patients with advanced thyroid cancer. METHODS: Mutational analysis of archival tumour tissue was performed using NGS with a targeted gene panel. Custom TaqMan assays were designed for plasma ctDNA testing using digital droplet polymerase chain reaction. Concentrations of detected ctDNA were correlated with the conventional biomarker concentration and axial imaging status defined by the Response Evaluation Criteria in Solid Tumours criteria. RESULTS: Tumour tissue from 51 patients was obtained, with the following histologies: 32 differentiated (differentiated thyroid cancer [DTC]), 15 medullary (medullary thyroid cancer [MTC]), three poorly differentiated and one anaplastic. NGS analysis detected variants in 42 (82%) of cases. Plasma was assayed for these patients in 190 samples, and ctDNA was detected in 67% of patients. Earlier detection of disease progression was noted in three patients with MTC. In two cases (PTC and ATC), where conventional biomarkers were not detectable, ctDNA was detected before disease progression. Changes in ctDNA concentration occurred earlier than conventional markers in response to disease progression in multiple patients with DTC receiving targeted therapies. CONCLUSION: The majority of patients with advanced thyroid cancer had detectable ctDNA. ctDNA measurement may offer superiority over conventional markers in several scenarios: earlier detection of progression in MTC; as an alternative biomarker when conventional markers are not available; more rapid assessment of the disease status in response to targeted therapies, thereby potentially allowing prompter discontinuation of futile therapies. These early results support the hypothesis that ctDNA may be a clinically useful biomarker in thyroid cancer.


Subject(s)
Circulating Tumor DNA/genetics , Precision Medicine/methods , Thyroid Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor , Disease Progression , Female , Humans , Male , Middle Aged , Thyroid Neoplasms/pathology
4.
Ann Oncol ; 29(1): 145-153, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29045530

ABSTRACT

Background: Selection of resistance mutations may play a major role in the development of endocrine resistance. ESR1 mutations are rare in primary breast cancer but have high prevalence in patients treated with aromatase inhibitors (AI) for advanced breast cancer. We investigated the evolution of genetic resistance to the first-line AI therapy using sequential ctDNA sampling in patients with advanced breast cancer. Patients and methods: Eighty-three patients on the first-line AI therapy for metastatic breast cancer were enrolled in a prospective study. Plasma samples were collected every 3 months to disease progression and ctDNA analysed by digital droplet PCR and enhanced tagged-amplicon sequencing (eTAm-Seq). Mutations identified in progression samples by sequencing were tracked back through samples before progression to study the evolution of mutations on therapy. The frequency of novel mutations was validated in an independent cohort of available baseline plasma samples in the Study of Faslodex versus Exemestane with or without Arimidex (SoFEA) trial, which enrolled patients with prior sensitivity to AI. Results: Of the 39 patients who progressed on the first-line AI, 56.4% (22/39) had ESR1 mutations detectable at progression, which were polyclonal in 40.9% (9/22) patients. In serial tracking, ESR1 mutations were detectable median 6.7 months (95% confidence interval 3.7-NA) before clinical progression. Utilising eTAm-Seq ctDNA sequencing of progression plasma, ESR1 mutations were demonstrated to be sub-clonal in 72.2% (13/18) patients. Mutations in RAS genes were identified in 15.4% (6/39) of progressing patients (4 KRAS, 1 HRAS, 1 NRAS). In SoFEA, KRAS mutations were detected in 21.2% (24/113) patients although there was no evidence that KRAS mutation status was prognostic for progression free or overall survival. Conclusions: Cancers progressing on the first-line AI show high levels of genetic heterogeneity, with frequent sub-clonal mutations. Sub-clonal KRAS mutations are found at high frequency. The genetic diversity of AI resistant cancers may limit subsequent targeted therapy approaches.


Subject(s)
Aromatase Inhibitors/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Circulating Tumor DNA/genetics , Adult , Aged , Aged, 80 and over , Breast Neoplasms/blood , Breast Neoplasms/pathology , Circulating Tumor DNA/blood , Disease Progression , Drug Resistance, Neoplasm/genetics , Estrogen Receptor alpha/genetics , Female , Humans , Middle Aged , Mutation , Neoplasm Metastasis , Prospective Studies , Proto-Oncogene Proteins p21(ras)/genetics
5.
Oncogene ; 33(19): 2478-86, 2014 May 08.
Article in English | MEDLINE | ID: mdl-23752180

ABSTRACT

Poor-prognosis oestrogen receptor-positive breast cancer is characterised by the presence of high-level focal amplifications. We utilised a focused small interfering RNA screen in 14 breast cancer cell lines to define genes that were pathogenic in three genomic regions focally amplified in oestrogen receptor-positive breast cancer, 8p11-12, 11q13 and 20q. Silencing the GNAS locus, that encodes the G protein alpha stimulatory subunit Gαs, specifically reduced the growth of 20q amplified breast cancer cell lines. Examination of a publically available small hairpin RNA data set confirmed GNAS silencing to be selective for 20q amplified cancer cell lines. Cell lines with 20q amplification were found to overexpress specifically the extra long Gαs splice variant (XLαs). Overexpression of XLαs induced cAMP levels to a greater extent than Gαs, suggesting that amplification of the GNAS locus, and overexpression of the XLαs variant in particular, enhanced cAMP signalling. GNAS silencing in amplified cell lines reduced extracellular-signal-regulated kinase 1/2 (ERK1/2) phosphorylation, and conversely overexpression of exogenous XLαs in a non-amplified cell line increased MEK-ERK1/2 phosphorylation, identifying one potential downstream consequence of enhanced cAMP signalling. Our data indicate that amplification of the GNAS locus may contribute to the pathogenesis of breast cancer, and highlight a previously unrecognised role for the GNAS XLαs variant in cancer.


Subject(s)
Breast Neoplasms/genetics , Chromosomes, Human, Pair 20/genetics , GTP-Binding Protein alpha Subunits, Gs/genetics , Blotting, Western , Cell Line, Tumor , Chromogranins , Female , Flow Cytometry , Fluorescent Antibody Technique , Gene Amplification , Genetic Loci , Humans , Protein Isoforms/genetics , RNA, Small Interfering , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...