Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Curr Trends Neurol ; 10: 53-64, 2016.
Article in English | MEDLINE | ID: mdl-28690375

ABSTRACT

Recent discoveries on the nature of the activity generated by the reticular activating system (RAS) suggest that arousal is much more involved in perception and movement than previously thought. The RAS is not simply an amorphous, unspecific region but rather a distinct group of nuclei with specific cell and transmitter types that control waking and modulate such processes as perception and movement. Thus, disturbances in the RAS will affect a number of neurological disorders. The discovery of gamma band activity in the RAS determined that high threshold calcium channels are responsible for generating gamma band activity in the RAS. Results showing that waking is mediated by CaMKII modulation of P/Q-type channels and REM sleep is modulated by cAMP/PK modulation of N-type channels points to different intracellular pathways influencing each state. Few studies address these important breakthroughs. Novel findings also show that the same primate RAS neurons exhibiting activity in relation to arousal are also involved in locomotion. Moreover, deep brain stimulation of this region, specifically the pedunculopontine nucleus (PPN DBS), in Parkinson's disease has salutary effects on movement, sleep, and cognition. Gamma oscillations appear to participate in sensory perception, problem solving, and memory, and coherence at these frequencies may occur at cortical or thalamocortical levels. However, rather than participating in the temporal binding of sensory events, gamma band activity generated in the RAS may help stabilize coherence related to arousal, providing a stable activation state during waking, and relay such activation to the cortex. Continuous sensory input will thus induce gamma band activity in the RAS to participate in the processes of preconscious awareness, and provide the essential stream of information for the formulation of many of our perceptions and actions. Such a role has received little attention but promises to help understand and treat a number of neurological disorders.

2.
Transl Brain Rhythm ; 1(2): 49-53, 2016.
Article in English | MEDLINE | ID: mdl-28691105

ABSTRACT

Gamma rhythms have been proposed to promote the feed forward or "bottom-up" flow of information from lower to higher regions in the brain during perception. On the other hand, beta rhythms have been proposed to represent feed back or "top-down" influence from higher regions to lower. The pedunculopontine nucleus (PPN) has been implicated in sleep-wake control and arousal, and is part of the reticular activating system (RAS). This review describes the properties of the cells in this nucleus. These properties are unique, and perhaps it is the particular characteristics of these cells that allow the PPN to be involved in a host of functions and disorders. The fact that all PPN neurons fire maximally at gamma band frequency regardless of electrophysiological or transmitter type, make this an unusual cell group. In other regions, for example in the cortex, cells with such a property represent only a sub-population. More importantly, the fact that this cell group's functions are related to the capacity to generate coherent activity at a preferred natural frequency, gamma band, speaks volumes about how the PPN functions. We propose that "bottom-up" gamma band influence arises in the RAS and contributes to the build-up of the background of activity necessary for preconscious awareness and gamma activity at cortical levels.

3.
Brain Res ; 884(1--2): 196-200, 2000 Nov 24.
Article in English | MEDLINE | ID: mdl-11082502

ABSTRACT

Injections into the pedunculopontine nucleus (PPN) of the cholinergic receptor agonist, carbachol (CAR), were found to reduce the amplitude of the vertex-recorded, sleep state-dependent P13 midlatency evoked potential in a dose- and time-dependent manner. This effect was blocked or reduced by pretreatment with the muscarinic receptor antagonist, scopolamine, injected into the PPN.


Subject(s)
Acetylcholine/metabolism , Evoked Potentials, Auditory/drug effects , Mesencephalon/drug effects , Neurons/drug effects , Pons/drug effects , Reticular Formation/drug effects , Sleep/drug effects , Animals , Carbachol/pharmacology , Evoked Potentials, Auditory/physiology , Male , Mesencephalon/cytology , Mesencephalon/metabolism , Neural Pathways/cytology , Neural Pathways/drug effects , Neural Pathways/metabolism , Neurons/cytology , Neurons/metabolism , Pons/cytology , Pons/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Muscarinic/drug effects , Receptors, Muscarinic/metabolism , Reticular Formation/cytology , Reticular Formation/metabolism , Scopolamine/pharmacology , Sleep/physiology
SELECTION OF CITATIONS
SEARCH DETAIL