Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mater Chem B ; 10(48): 10042-10053, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36156670

ABSTRACT

Ceria nanoparticles are remarkable antioxidants due to their large cerium(III) content and the possibility of recovering cerium(III) from cerium(IV) after reaction. Here we increase the cerium(III) content of colloidally stable nanoparticles (e.g., nanocrystals) using a reactive polymeric surface coating. Catechol-grafted poly(ethylene glycols) (PEG) polymers of varying lengths and architectures yield materials that are non-aggregating in a variety of aqueous media. Cerium(IV) on the ceria surface both binds and oxidizes the catechol functionality, generating a dark-red colour emblematic of surface-oxidized catechols with a concomitant increase in cerium(III) revealed by X-ray photoemission spectroscopy (XPS). The extent of ceria reduction depends sensitively on the architecture of the coating polymer; small and compact polymer chains pack with high density at the nanoparticle surface yielding the most cerium(III). Nanoparticles with increased surface reduction, quantified by the intensity of their optical absorption and thermogravimetric measures of polymer grafting densities, were more potent antioxidants as measured by a standard TEAC antioxidant assay. For the same core composition nanoparticle antioxidant capacities could be increased over an order of magnitude by tailoring the length and architecture of the reactive surface coatings.


Subject(s)
Cerium , Nanoparticles , Polyethylene Glycols/chemistry , Antioxidants , Nanoparticles/chemistry , Cerium/chemistry , Catechols/chemistry , Polymers
2.
iScience ; 25(7): 104475, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35789852

ABSTRACT

Silver nanomaterials have potent antibacterial properties that are the foundation for their wide commercial use as well as for concerns about their unintended environmental impact. The nanoparticles themselves are relatively biologically inert but they can undergo oxidative dissolution yielding toxic silver ions. A quantitative relationship between silver material structure and dissolution, and thus antimicrobial activity, has yet to be established. Here, this dissolution process and associated biological activity is characterized using uniform nanoparticles with variable dimension, shape, and surface chemistry. From this, a phenomenological model emerges that quantitatively relates material structure to both silver dissolution and microbial toxicity. Shape has the most profound influence on antibacterial activity, and surprisingly, surface coatings the least. These results illustrate how material structure may be optimized for antimicrobial properties and suggest strategies for minimizing silver nanoparticle effects on microbes.

3.
ACS Appl Mater Interfaces ; 12(37): 41932-41941, 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32812740

ABSTRACT

Multicore iron oxide nanoparticles, also known as colloidal nanocrystal clusters, are magnetic materials with diverse applications in biomedicine and photonics. Here, we examine how both of their characteristic dimensional features, the primary particle and sub-micron colloid diameters, influence their magnetic properties and performance in two different applications. The characterization of these basic size-dependent properties is enabled by a synthetic strategy that provides independent control over both the primary nanocrystal and cluster dimensions. Over a wide range of conditions, electron microscopy and X-ray diffraction reveal that the oriented attachment of smaller nanocrystals results in their crystallographic alignment throughout the entire superstructure. We apply a sulfonated polymer with high charge density to prevent cluster aggregation and conjugate molecular dyes to particle surfaces so as to visualize their collection using handheld magnets. These libraries of colloidal clusters, indexed both by primary nanocrystal dimension (dp) and overall cluster diameter (Dc), form magnetic photonic crystals with relatively weak size-dependent properties. In contrast, their performance as MRI T2 contrast agents is highly sensitive to cluster diameter, not primary particle size, and is optimized for materials of 50 nm diameter (r2 = 364 mM-1 s-1). These results exemplify the relevance of dimensional control in developing applications for these versatile materials.


Subject(s)
Contrast Media/chemistry , Magnetic Resonance Imaging , Magnetite Nanoparticles/chemistry , Optics and Photonics , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...