Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 4615-4618, 2021 11.
Article in English | MEDLINE | ID: mdl-34892242

ABSTRACT

In active prostheses, it is desired to achieve target poses for a given family of tasks, for example, in the task of forward reaching using a transhumeral prosthesis with coordinated joint movements. To do so, it is necessary to distinguish these target poses accurately using the input features (e.g. kinematic and sEMG) obtained from the human users. However, the input features have conventionally been selected through human observations and influenced heavily by the availability of sensors in this context, which may not always yield the most relevant information to differentiate the target poses in the given task. In order to better select from a pool of available input features, those most appropriate for a given set of target poses, a measure that correlates well with the resulting classification accuracy is required so that it can inform the interface design process. In this paper, a scatter-matrix based class separability measure is adopted to quantitatively evaluate the separability of the target poses from their corresponding input features. A human experiment was performed on ten able-bodied subjects. Subjects were asked to perform forward-reaching movements with their arms on nine target poses in a virtual reality (VR) platform and the corresponding kinematic information of their arm movement and muscle activities were recorded. The accuracy of the prosthetic interface in determining the intended target poses of the human user during forward reaching is evaluated for different combinations of input features, selected from the kinematic and sEMG sensors worn by the users. The results demonstrate that employing input features that yield a high separability measure between target poses results in a high accuracy in identifying the intended target poses in the execution of the task.


Subject(s)
Artificial Limbs , Arm , Biomechanical Phenomena , Electromyography , Humans , Movement
2.
IEEE Trans Cybern ; 51(2): 1070-1084, 2021 Feb.
Article in English | MEDLINE | ID: mdl-31217140

ABSTRACT

Synergies have been adopted in prosthetic limb applications to reduce the complexity of design, but typically involve a single synergy setting for a population and ignore individual preference or adaptation capacity. However, personalization of the synergy setting is necessary for the effective operation of the prosthetic device. Two major challenges hinder the personalization of synergies in human-prosthesis interfaces (HPIs). The first is related to the process of human motor adaptation and the second to the variation in motor learning dynamics of individuals. In this paper, a systematic personalization of kinematic synergies for HPIs using online measurements from each individual is proposed. The task of reaching using the upper limb is described by an objective function and the interface is parameterized by a kinematic synergy. Consequently, personalizing the interface for a given individual can be formulated as finding an optimal personalized parameter. A structure to model the observed motor behavior that allows for the personalized traits of motor preference and motor learning is proposed, and subsequently used in an online optimization scheme to identify the synergies for an individual. The knowledge of the common features contained in the model enables online adaptation of the HPI to happen concurrently to human motor adaptation without the need to retune the personalization algorithm for each individual. Human-in-the-loop experimental results with able-bodied subjects, performed in a virtual reality environment to emulate amputation and prosthesis use, show that the proposed personalization algorithm was effective in obtaining optimal synergies with a fast uniform convergence speed across a group of individuals.


Subject(s)
Artificial Limbs , Signal Processing, Computer-Assisted , Virtual Reality , Adult , Aged , Algorithms , Biomechanical Phenomena , Female , Humans , Male , Middle Aged , Prosthesis Design , User-Computer Interface , Young Adult
3.
IEEE Trans Neural Syst Rehabil Eng ; 28(12): 2966-2977, 2020 12.
Article in English | MEDLINE | ID: mdl-33151883

ABSTRACT

Synergistic prostheses enable the coordinated movement of the human-prosthetic arm, as required by activities of daily living. This is achieved by coupling the motion of the prosthesis to the human command, such as the residual limb movement in motion-based interfaces. Previous studies demonstrated that developing human-prosthetic synergies in joint-space must consider individual motor behaviour and the intended task to be performed, requiring personalisation and task calibration. In this work, an alternative synergy-based strategy, utilising a synergistic relationship expressed in task-space, is proposed. This task-space synergy has the potential to replace the need for personalisation and task calibration with a model-based approach requiring knowledge of the individual user's arm kinematics, the anticipated hand motion during the task and voluntary information from the prosthetic user. The proposed method is compared with surface electromyography-based and joint-space synergy-based prosthetic interfaces in a study of motor behaviour and task performance on able-bodied subjects using a VR-based transhumeral prosthesis. Experimental results showed that for a set of forward reaching tasks the proposed task-space synergy achieves comparable performance to joint-space synergies without the need to rely on time-consuming calibration processes or human motor learning. Case study results with an amputee subject motivate the further development of the proposed task-space synergy method.


Subject(s)
Artificial Limbs , Activities of Daily Living , Electromyography , Hand , Humans , Movement
4.
Front Neurosci ; 14: 348, 2020.
Article in English | MEDLINE | ID: mdl-32395102

ABSTRACT

The appropriate sensory information feedback is important for the success of an object grasping and manipulation task. In many scenarios, the need arises for multiple feedback information to be conveyed to a prosthetic hand user simultaneously. The multiple sets of information may either (1) directly contribute to the performance of the grasping or object manipulation task, such as the feedback of the grasping force, or (2) simply form additional independent set(s) of information. In this paper, the efficacy of simultaneously conveying two independent sets of sensor information (the grasp force and a secondary set of information) through a single channel of feedback stimulation (vibrotactile via bone conduction) to the human user in a prosthetic application is investigated. The performance of the grasping task is not dependent to the second set of information in this study. Subject performance in two tasks: regulating the grasp force and identifying the secondary information, were evaluated when provided with either one corresponding information or both sets of feedback information. Visual feedback is involved in the training stage. The proposed approach is validated on human-subject experiments using a vibrotactile transducer worn on the elbow bony landmark (to realize a non-invasive bone conduction interface) carried out in a virtual reality environment to perform a closed-loop object grasping task. The experimental results show that the performance of the human subjects on either task, whilst perceiving two sets of sensory information, is not inferior to that when receiving only one set of corresponding sensory information, demonstrating the potential of conveying a second set of information through a bone conduction interface in an upper limb prosthetic task.

5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 3194-3197, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30441072

ABSTRACT

Current prosthesis command interfaces only allow for a single degree of freedom to be commanded at a time, making coordinated motion difficult to achieve. Thus it becomes crucial to develop methods that complement these interfaces to allow for intuitive coordinated arm motion. Kinematic synergies have been shown as an alternate method where the motion of the prosthetic device is coordinated with that of the residual limb. In this paper, the mapping between the parameters of a kinematic synergy model and a measure of task performance is established experimentally in order to test the applicability of online optimization methods for the identification of synergies. To achieve this, a cost function that captures the objective of the reaching task and a linear kinematic synergy model were chosen. A human experiment was developed in a Virtual Reality (VR) platform in order to determine the synergy-performance relationship. The experiments were performed on 10 able-bodied subjects. The relationship observed between the synergy parameter and the reaching task cost function suggests existing online optimization methods may be applicable.


Subject(s)
Artificial Limbs , Upper Extremity , Biomechanical Phenomena , Humans , Task Performance and Analysis
SELECTION OF CITATIONS
SEARCH DETAIL