Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 100(13): 6013-33, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26940050

ABSTRACT

Two-stage technologies have been developed for anaerobic digestion of waste-activated sludge. In this study, the archaeal and bacterial community structure dynamics and bioprocess performance of a bench-scale two-stage anaerobic digester treating urban sewage sludge have been studied by the means of high-throughput sequencing techniques and physicochemical parameters such as pH, dried sludge, volatile dried sludge, acid concentration, alkalinity, and biogas generation. The coupled analyses of archaeal and bacterial communities and physicochemical parameters showed a direct relationship between archaeal and bacterial populations and bioprocess performance during start-up and working operation of a two-stage anaerobic digester. Moreover, results demonstrated that archaeal and bacterial community structure was affected by changes in the acid/alkalinity ratio in the bioprocess. Thus, a predominance of the acetoclastic methanogen Methanosaeta was observed in the methanogenic bioreactor at high-value acid/alkaline ratio, while a predominance of Methanomassilicoccaeceae archaea and Methanoculleus genus was observed in the methanogenic bioreactor at low-value acid/alkaline ratio. Biodiversity tag-iTag sequencing studies showed that methanogenic archaea can be also detected in the acidogenic bioreactor, although its biological activity was decreased after 4 months of operation as supported by physicochemical analyses. Also, studies of the VFA producers and VFA consumers microbial populations showed as these microbiota were directly affected by the physicochemical parameters generated in the bioreactors. We suggest that the results obtained in our study could be useful for future implementations of two-stage anaerobic digestion processes at both bench- and full-scale.


Subject(s)
Archaea/metabolism , Bacteria/metabolism , Bioreactors/microbiology , Sewage/microbiology , Anaerobiosis , Archaea/classification , Archaea/genetics , Archaea/isolation & purification , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Biodegradation, Environmental , Biodiversity , Methane/analysis , Methane/metabolism , Microbiota , Sewage/analysis
2.
Sci Rep ; 6: 18786, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26728449

ABSTRACT

The bacterial community structure of 10 different wastewater treatment systems and their influents has been investigated through pyrosequencing, yielding a total of 283486 reads. These bioreactors had different technological configurations: conventional activated sludge (CAS) systems and very highly loaded A-stage systems. A-stage processes are proposed as the first step in an energy producing municipal wastewater treatment process. Pyrosequencing analysis indicated that bacterial community structure of all influents was similar. Also the bacterial community of all CAS bioreactors was similar. Bacterial community structure of A-stage bioreactors showed a more case-specific pattern. A core of genera was consistently found for all influents, all CAS bioreactors and all A-stage bioreactors, respectively, showing that different geographical locations in The Netherlands and Spain did not affect the functional bacterial communities in these technologies. The ecological roles of these bacteria were discussed. Influents and A-stage bioreactors shared several core genera, while none of these were shared with CAS bioreactors communities. This difference is thought to reside in the different operational conditions of the two technologies. This study shows that bacterial community structure of CAS and A-stage bioreactors are mostly driven by solids retention time (SRT) and hydraulic retention time (HRT), as suggested by multivariate redundancy analysis.


Subject(s)
Bacteria/classification , Biodiversity , Microbiota , Sewage/microbiology , Bacteria/genetics , Bioreactors , Environment , Metagenome , Phylogeny , Wastewater/microbiology
3.
Environ Sci Pollut Res Int ; 23(7): 6651-60, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26645230

ABSTRACT

It has been demonstrated that an anaerobic digestion process cannot attain an efficient removal of several amino acids, with methionine being one of the most persistent of these. Thus, the effect that methionine amino acid has over the partial-nitritation process with fixed-biofilm configuration in terms of performance and bacterial community dynamics has been investigated. With respect to the performance with no addition, 100 mg/L methionine loading decreased ammonium oxidation efficiency in 60% and 100% at concentrations of 300 and 500 mg/L methionine, respectively. Bacterial biomass sharply increased by 30, 65, and 230% with the addition of 100, 300, and 500 mg/L methionine, respectively. Bacterial community analysis showed that methionine addition supported the proliferation of a diversity of heterotrophic genera, such as Lysobacter and Micavibrio, and reduced the relative abundance of ammonium oxidizing genus Nitrosomonas. This research shows that the addition of methionine affects the performance of the partial-nitritation process. In this sense, amino acids can pose a threat for the of partial-nitritation process treating anaerobic digester supernatant at full-scale implementation.


Subject(s)
Biofilms/drug effects , Bioreactors/microbiology , Methionine/pharmacology , Nitrogen/analysis , Water Pollutants, Chemical/pharmacology , Water Purification/methods , Ammonium Compounds/analysis , Ammonium Compounds/metabolism , Anaerobiosis , Biofilms/growth & development , Biomass , Methionine/metabolism , Models, Theoretical , Nitrification/drug effects , Nitrogen/metabolism , Nitrosomonas/growth & development , Nitrosomonas/metabolism , Oxidation-Reduction , Water Pollutants, Chemical/metabolism
4.
Bioprocess Biosyst Eng ; 38(3): 499-508, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25245398

ABSTRACT

Full-scale applications of autotrophic nitrogen removal technologies for the treatment of digested sludge liquor have proliferated during the last decade. Among these technologies, the aerobic/anoxic deammonification process (DEMON) is one of the major applied processes. This technology achieves nitrogen removal from wastewater through anammox metabolism inside a single bioreactor due to alternating cycles of aeration. To date, microbial community composition of full-scale DEMON bioreactors have never been reported. In this study, bacterial community structure of a full-scale DEMON bioreactor located at the Apeldoorn wastewater treatment plant was analyzed using pyrosequencing. This technique provided a higher-resolution study of the bacterial assemblage of the system compared to other techniques used in lab-scale DEMON bioreactors. Results showed that the DEMON bioreactor was a complex ecosystem where ammonium oxidizing bacteria, anammox bacteria and many other bacterial phylotypes coexist. The potential ecological role of all phylotypes found was discussed. Thus, metagenomic analysis through pyrosequencing offered new perspectives over the functioning of the DEMON bioreactor by exhaustive identification of microorganisms, which play a key role in the performance of bioreactors. In this way, pyrosequencing has been proven as a helpful tool for the in-depth investigation of the functioning of bioreactors at microbiological scale.


Subject(s)
Bioreactors/microbiology , Denitrification , Microbiota , Wastewater/microbiology , Water Purification
SELECTION OF CITATIONS
SEARCH DETAIL
...