Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 10157, 2017 08 31.
Article in English | MEDLINE | ID: mdl-28860643

ABSTRACT

The molecular details of local plant response against Xanthomonas translucens infection is largely unknown. Moreover, there is no knowledge about effects of the pathogen on the root's transcriptome and proteome. Therefore, we investigated the global gene and protein expression changes both in leaves and roots of wheat (Triticum aestivum) 24 h post leaf infection of X. translucens. This simultaneous analysis allowed us to obtain insight into possible metabolic rearrangements in above- and belowground tissues and to identify common responses as well as specific alterations. At the site of infection, we observed the implication of various components of the recognition, signaling, and amplification mechanisms in plant response to the pathogen. Moreover, data indicate a massive down-regulation of photosynthesis and confirm the chloroplast as crucial signaling hub during pathogen attack. Notably, roots responded as well to foliar attack and their response significantly differed from that locally triggered in infected leaves. Data indicate that roots as a site of energy production and synthesis of various secondary metabolites may actively influence the composition and colonisation level of root-associated microbes. Finally, our results emphasize the accumulation of jasmonic acid, pipecolic acid and/or the downstream mediator of hydrogen peroxide as long distal signals from infected leaves to roots.


Subject(s)
Proteome/genetics , Transcriptome , Triticum/genetics , Xanthomonas/pathogenicity , Chloroplasts/metabolism , Chloroplasts/microbiology , Cyclopentanes/metabolism , Oxylipins/metabolism , Pipecolic Acids/metabolism , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Roots/metabolism , Plant Roots/microbiology , Proteome/metabolism , Triticum/microbiology
2.
Plant Physiol Biochem ; 74: 1-8, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24246668

ABSTRACT

The aim of this study was two-fold: first, to characterize blackberry fruits from Rubus sp. var. Lochness along the year, and secondly, to evaluate the ability of a Pseudomonas strain (N21.4) to improve fruit yield and quality under field conditions in production greenhouses throughout the year. The strain was root or leaf inoculated to blackberry plants and fruits were harvested in each season. Nutritional parameters, antioxidant potential and bioactive contents were determined; total fruit yield was recorded. Blackberries grown under short day conditions (autumn and winter) showed significantly lower °Brix values than fruits grown under long day conditions. Interestingly, an increase in fruit °Brix, relevant for quality, was detected after bacterial challenge, together with significant and sustained increases in total phenolics and flavonoids. Improvements in inoculated fruits were more evident from October through early March, when environmental conditions are worse. In summary, N21.4 is an effective agent to increase fruit quality and production along the year in blackberry; this is an environmentally friendly approach to increase fruit quality.


Subject(s)
Fruit/chemistry , Pseudomonas fluorescens/physiology , Rosaceae/chemistry , Fruit/microbiology , Rosaceae/microbiology , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...