Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (202)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38189447

ABSTRACT

DNA has dedicated cellular repair pathways capable of coping with lesions that could arise from both endogenous and/or exogenous sources. DNA repair necessitates collaboration between numerous proteins, responsible for covering a broad range of tasks from recognizing and signaling the presence of a DNA lesion to physically repairing it. During this process, tracks of single-stranded DNA (ssDNA) are often created, which are eventually filled by DNA polymerases. The nature of these ssDNA tracks (in terms of both length and number), along with the polymerase recruited to fill these gaps, are repair pathway-specific. The visualization of these ssDNA tracks can help us understand the complicated dynamics of DNA repair mechanisms. This protocol provides a detailed method for the preparation of G1 synchronized cells to measure ssDNA foci formation upon genotoxic stress. Using an easy-to-utilize immunofluorescence approach, we visualize ssDNA by staining for RPA2, a component of the heterotrimeric replication protein A complex (RPA). RPA2 binds to and stabilizes ssDNA intermediates that arise upon genotoxic stress or replication to control DNA repair and DNA damage checkpoint activation. 5-Ethynyl-2'-deoxyuridine (EdU) staining is used to visualize DNA replication to exclude any S phase cells. This protocol provides an alternative approach to the conventional, non-denaturing 5-bromo-2'-deoxyuridine (BrdU)-based assays and is better suited for the detection of ssDNA foci outside the S phase.


Subject(s)
DNA Repair , DNA, Single-Stranded , Cell Cycle , Cell Division , G1 Phase
2.
PLoS Biol ; 17(4): e3000204, 2019 04.
Article in English | MEDLINE | ID: mdl-30951520

ABSTRACT

Telomerase, a unique reverse transcriptase that specifically extends the ends of linear chromosomes, is up-regulated in the vast majority of cancer cells. Here, we show that an indole nucleotide analog, 5-methylcarboxyl-indolyl-2'-deoxyriboside 5'-triphosphate (5-MeCITP), functions as an inhibitor of telomerase activity. The crystal structure of 5-MeCITP bound to the Tribolium castaneum telomerase reverse transcriptase reveals an atypical interaction, in which the nucleobase is flipped in the active site. In this orientation, the methoxy group of 5-MeCITP extends out of the canonical active site to interact with a telomerase-specific hydrophobic pocket formed by motifs 1 and 2 in the fingers domain and T-motif in the RNA-binding domain of the telomerase reverse transcriptase. In vitro data show that 5-MeCITP inhibits telomerase with a similar potency as the clinically administered nucleoside analog reverse transcriptase inhibitor azidothymidine (AZT). In addition, cell-based studies show that treatment with the cell-permeable nucleoside counterpart of 5-MeCITP leads to telomere shortening in telomerase-positive cancer cells, while resulting in significantly lower cytotoxic effects in telomerase-negative cell lines when compared with AZT treatment.


Subject(s)
Nucleosides/metabolism , Telomerase/antagonists & inhibitors , Telomerase/physiology , Animals , Catalytic Domain/drug effects , HCT116 Cells , HEK293 Cells , HeLa Cells , Humans , Models, Molecular , Nucleosides/chemical synthesis , Nucleosides/physiology , Nucleotides/chemical synthesis , Nucleotides/metabolism , RNA/metabolism , Reverse Transcriptase Inhibitors/pharmacology , Telomere , Tribolium/genetics , Tribolium/metabolism , Zidovudine/metabolism , Zidovudine/pharmacology
3.
Cryst Growth Des ; 17(5): 2767-2781, 2017 May 03.
Article in English | MEDLINE | ID: mdl-29234242

ABSTRACT

l-Cystine kidney stones-aggregates of single crystals of the hexagonal form of l-cystine-afflict more than 20 000 individuals in the United States alone. Current therapies are often ineffective and produce adverse side effects. Recognizing that the growth of l-cystine crystals is a critical step in stone pathogenesis, real-time in situ atomic force microscopy of growth on the (0001) face of l-cystine crystals and measurements of crystal growth anisotropy were performed in the presence of prospective inhibitors drawn from a 31-member library. The most effective molecular imposters for crystal growth inhibition were l-cystine mimics (aka molecular imposters), particularly l-cystine diesters and diamides, for which a kinetic analysis revealed a common inhibition mechanism consistent with Cabrera-Vermilyea step pinning. The amount of inhibitor incorporated by l-cystine crystals, estimated from kinetic data, suggests that imposter binding to the {0001} face is less probable than binding of l-cystine solute molecules, whereas imposter binding to {101̅0} faces is comparable to that of l-cystine molecules. These estimates were corroborated by computational binding energies. Collectively, these findings identify the key structural factors responsible for molecular recognition between molecular imposters and l-cystine crystal kink sites, and the inhibition of crystal growth. The observations are consistent with the reduction of l-cystine stone burden in mouse models by the more effective inhibitors, thereby articulating a strategy for stone prevention based on molecular design.

SELECTION OF CITATIONS
SEARCH DETAIL
...