Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pain ; 163(5): e642-e653, 2022 05 01.
Article in English | MEDLINE | ID: mdl-34629389

ABSTRACT

ABSTRACT: Nociceptive and pruriceptive neurons in the dorsal root ganglia (DRG) convey sensations of pain and itch to the spinal cord, respectively. One subtype of mature DRG neurons, comprising 6% to 8% of neurons in the ganglia, is responsible for sensing mediators of acute itch and atopic dermatitis, including the cytokine IL-31. How itch-sensitive (pruriceptive) neurons are specified is unclear. Here, we show that transmembrane protein 184B (TMEM184B), a protein with roles in axon degeneration and nerve terminal maintenance, is required for the expression of a large cohort of itch receptors, including those for interleukin 31 (IL-31), leukotriene C4, and histamine. Male and female mice lacking TMEM184B show reduced responses to IL-31 but maintain normal responses to pain and mechanical force, indicating a specific behavioral defect in IL-31-induced pruriception. Calcium imaging experiments indicate that a reduction in IL-31-induced calcium entry is a likely contributor to this phenotype. We identified an early failure of proper Wnt-dependent transcriptional signatures and signaling components in Tmem184b mutant mice that may explain the improper DRG neuronal subtype specification. Accordingly, lentiviral re-expression of TMEM184B in mutant embryonic neurons restores Wnt signatures. Together, these data demonstrate that TMEM184B promotes adult somatosensation through developmental Wnt signaling and promotion of proper pruriceptive gene expression. Our data illuminate a new key regulatory step in the processes controlling the establishment of diversity in the somatosensory system.


Subject(s)
Calcium , Pruritus , Animals , Calcium/metabolism , Female , Ganglia, Spinal/metabolism , Humans , Interleukins/adverse effects , Interleukins/genetics , Interleukins/metabolism , Male , Mice , Pain/metabolism , Pruritus/metabolism
2.
J Comp Neurol ; 528(10): 1683-1703, 2020 07.
Article in English | MEDLINE | ID: mdl-31909826

ABSTRACT

Understanding neuronal function at the local and circuit level requires understanding astrocyte function. We have provided a detailed analysis of astrocyte morphology and territory in the Drosophila third-instar ventral nerve cord where there already exists considerable understanding of the neuronal network. Astrocyte shape varies more than previously reported; many have bilaterally symmetrical partners, many have a high percentage of their arborization in adjacent segments, and many have branches that follow structural features. Taken together, our data are consistent with, but not fully explained by, a model of a developmental growth process dominated by competitive or repulsive interactions between astrocytes. Our data suggest that the model should also include cell-autonomous aspects, as well as the use of structural features for growth. Variation in location of arborization territory for identified astrocytes was great enough that a standardized scheme of neuropil division among the six astrocytes that populate each hemi-segment is not possible at the third instar. The arborizations of the astrocytes can extend across neuronal functional domains. The ventral astrocyte in particular, whose territory can extend well into the proprioceptive region of the neuropil, has no obvious branching pattern that correlates with domains of particular sensory modalities, suggesting that the astrocyte would respond to neuronal activity in any of the sensory modalities, perhaps integrating across them. This study sets the stage for future studies that will generate a robust, functionally oriented connectome that includes both partners in neuronal circuits-the neurons and the glial cells, providing the foundation necessary for studies to elucidate neuron-glia interactions in this neuropil.


Subject(s)
Astrocytes/cytology , Neuropil/cytology , Animals , Drosophila , Larva/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...