ABSTRACT
BACKGROUND: Bone tumors are neoplasias with a high overall mortality; one of the main factors that reduce survival is their high capacity to develop metastases. It has been reported that finding lung metastases at diagnosis of osteosarcoma (OS), chondrosarcoma (CS) and giant cell tumor of bone (GCTb) is quite common. In this study, we inquire the relationship of metastases caused by these tumors with different clinical and pathological aspects, in order to guide medical personnel in the diagnosis and opportune treatment of metastases or micro metastases. MATERIALS AND METHODS: We collected data of 384 patients with clinical, radiological and histopathological diagnosis of OS, GCTb and CS that attended the National Rehabilitation Institute (INR) during 2006 to 2014. Chi-square and Fisher's exact tests were performed for data analysis. RESULTS: In the three tumor types, the presence of metastases at diagnosis was variable (p=0.0001). Frequency of metastases was 36.7%, 31.7% and 13.2% for OS, CS and GCTb respectively. The average age had no significant difference (p>0.05) in relation to metastases, even so, patients with OS and GCTb and metastases, were older while patients with CS and metastases were younger, in comparison to patients without metastases. Males had a higher frequency of metastases (68.2%, p = 0.09) in contrast to CS and GCTb, in which the metastases was more frequent in women with 51.9% (p = 0.44) and 57.9% (p = 0.56) respectively. Broadly, metastasis was associated with primary tumors located in the femur (44.4%), followed by the tibia (15.6%); metastases was more frequent when primary tumor of GCTb and OS were in the same bones, but were located in the hip (26.3%) for CS. CONCLUSIONS: The frequency of metastases in OS, GCTb and CS is high in our population and is determined by different clinicopathological variables related to the kind of tumor. Further studies are needed in order to evaluate metastases subsequent to diagnosis and associations with survival and clinicopathological factors , as well as to determine the sensitivity and specificity of current methods of detection.
Subject(s)
Bone Neoplasms/pathology , Chondrosarcoma/pathology , Giant Cell Tumor of Bone/pathology , Lung Neoplasms/secondary , Osteosarcoma/pathology , Adult , Bone and Bones/pathology , Female , Humans , Lung Neoplasms/epidemiology , Male , Mexico/epidemiology , Sex FactorsABSTRACT
BACKGROUND: Primary bone neoplasms are rare, contributing only 0.2% of the global burden of all human malignancies. Osteosarcoma (OS) and chondrosarcoma (CS) are the most common malignancies of bone. The giant cell tumor of bone (GCTb) is a benign tumor with behavior characterized by osteolytic bone destruction. The OS, CS and GCTb affect both sexes, all races and generally have incidence peaks regarding the age of the patient which vary according to the tumor type. We analyzed the incidences of OS, CS and GCTb and their relations with gender and age in patients treated in the National Rehabilitation Institute (INR, for its acronym in Spanish) over a period of nine years. MATERIALS AND METHODS: In the study period, clinic pathological data for 384 patients were obtained with clinical, radiological and histopathological diagnosis for OS, GCTb and CS. Data analysis was performed using the chi-square and Fisher's exact tests. RESULTS: From 2006 to 2014 were recorded 384 cases of bone malignancies in the database of INR. The GCTb had the highest incidence (53.1%), followed by OS (31.3%) and finally the CS (15.6%). The overall average age was 33.6±15.8 years and the overall frequency of gender had a ratio of 1/1.03 male/female. The states with the highest incidence were Distrito Federal and Estado de Mexico with 29.2% and 25.3% respectively. Malignant neoplasms of bone assessed in the course of nine years show three significant increases in 2008, 2011 and 2014 (p=0.14). We found association between sex and tumor type (p=0.03), GCTb and CS predominated in females (54.9% and 56.6% respectively), while for the OS males were most affected (59.1%). Age was different in relation with tumor type (p=0.0001), average age was 24.3±11.2 years for OS, 34.5±13 years for GCTb and 49.2±18.5 years for CS. Furthermore, associations of tumor type with topographic location of the primary tumor (P=0.0001) were found. CONCLUSIONS: In this study we can see that incidence of musculoskeletal tumor in our population is continuously increasing and in nine years an approximately 200% increase of musculoskeletal tumor cases was observed.
Subject(s)
Bone Neoplasms/epidemiology , Chondrosarcoma/epidemiology , Giant Cell Tumor of Bone/epidemiology , Osteosarcoma/epidemiology , Adolescent , Adult , Age Factors , Aged , Child , Databases, Factual , Humans , Incidence , Mexico/epidemiology , Middle Aged , Sex Factors , Young AdultABSTRACT
Tissue engineering with the use of biodegradable and biocompatible scaffolds is an interesting option for ear repair. Chitosan-Polyvinyl alcohol-Epichlorohydrine hydrogel (CS-PVA-ECH) is biocompatible and displays appropriate mechanical properties to be used as a scaffold. The present work, studies the potential of CS-PVA-ECH scaffolds seeded with chondrocytes to develop elastic cartilage engineered-neotissues. Chondrocytes isolated from rabbit and swine elastic cartilage were independently cultured onto CS-PVA-ECH scaffolds for 20 days to form the appropriate constructs. Then, in vitro cell viability and morphology were evaluated by calcein AM and EthD-1 assays and Scanning Electron Microscopy (SEM) respectively, and the constructs were implanted in nu/nu mice for four months, in order to evaluate the neotissue formation. Histological analysis of the formed neotissues was performed by Safranin O, Toluidine blue (GAG's), Verhoeff-Van Gieson (elastic fibers), Masson's trichrome (collagen) and Von Kossa (Calcium salts) stains and SEM. Results indicate appropriate cell viability, seeded with rabbit or swine chondrocyte constructs; nevertheless, upon implantation the constructs developed neotissues with different characteristics depending on the animal species from which the seeded chondrocytes came from. Neotissues developed from swine chondrocytes were similar to auricular cartilage, while neotissues from rabbit chondrocytes were similar to hyaline cartilage and eventually they differentiate to bone. This result suggests that neotissue characteristics may be influenced by the animal species source of the chondrocytes isolated.