Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 9: 1220, 2018.
Article in English | MEDLINE | ID: mdl-29937757

ABSTRACT

Lipid A is the bioactive component of lipopolysaccharide, and presents a dynamic structure that undergoes modifications in response to environmental signals. Many of these structural modifications influence Salmonella virulence. This is the case of lipid A hydroxylation, a modification catalyzed by the dioxygenase LpxO. Although it has been established that oxygen is required for lipid A hydroxylation acting as substrate of LpxO in Salmonella, an additional regulatory role for oxygen in lpxO expression has not been described. The existence of this regulation could be relevant considering that Salmonella faces low oxygen tension during infection. This condition leads to an adaptive response by changing the expression of numerous genes, and transcription factors Fnr and ArcA are major regulators of this process. In this work, we describe for the first time that lipid A hydroxylation and lpxO expression are modulated by oxygen availability in Salmonella enterica serovar Enteritidis (S. Enteritidis). Biochemical and genetic analyses indicate that this process is regulated by Fnr and ArcA controlling the expression of lpxO. In addition, according to our results, this regulation occurs by direct binding of both transcription factors to specific elements present in the lpxO promoter region. Altogether, our observations revealed a novel role for oxygen acting as an environment signal controlling lipid A hydroxylation in S. Enteritidis.

2.
Biochem Biophys Res Commun ; 477(4): 563-567, 2016 09 02.
Article in English | MEDLINE | ID: mdl-27343553

ABSTRACT

Lipopolysaccharide (LPS) consists of three covalently linked domains: the lipid A, the core region and the O antigen (OAg), consisting of repeats of an oligosaccharide. Salmonella enterica serovar Enteritidis (S. Enteritidis) produces a LPS with two OAg preferred chain lengths: a long (L)-OAg controlled by WzzSE and a very long (VL)-OAg controlled by WzzfepE. In this work, we show that OAg produced by S. Enteritidis grown in E minimal medium also presented two preferred chain-lengths. However, a simultaneous and opposing change in the production of L-OAg and VL-OAg was observed in response to oxygen availability. Biochemical and genetics analyses indicate that this process is regulated by transcriptional factors Fnr and ArcA by means of controlling the transcription of genes encoding WzzSE and WzzfepE in response to oxygen availability. Thus, our results revealed a sophisticated regulatory mechanism involved in the adaptation of S. Enteritidis to one of the main environmental cues faced by this pathogen during infection.


Subject(s)
O Antigens/metabolism , Oxygen/metabolism , Salmonella enterica/metabolism , Electrophoresis, Polyacrylamide Gel , Genes, Bacterial , O Antigens/chemistry , Polymerization , Salmonella enterica/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...