Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 103(3): 468-474, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30632471

ABSTRACT

In 2017, potato tubers suspected of being infected with the bacterium 'Candidatus Liberibacter solanacearum' were received from the Animal and Plant Health Inspection Service in the United States. A total of 368 chipping tubers were observed for internal symptoms of zebra chip disease, which is associated with 'Ca. L. solanacearum' infection in the United States, Mexico, Central America, and New Zealand. A single tuber sliced at the stem end showed classic zebra chip symptoms of darkened medullary rays, with streaking and necrotic flecking. The symptomatic tuber was confirmed positive for the bacterium by polymerase chain reaction targeting three different 'Ca. L. solanacearum' genes. Sequence analysis of these three genes, and subsequent BLAST analysis, identified the pathogen with 99, 98, and 97% identity to 'Ca. L. solanacearum' for the 16S ribosomal RNA gene, 50S ribosomal proteins L10/L12 genes, and the outer membrane protein gene, respectively. Sequence analysis did not identify the sample as one of the six known haplotypes of 'Ca. L. solanacearum,' indicating that a seventh haplotype of the pathogen was identified. This new haplotype, designated haplotype F, is now the third haplotype of the bacterium that infects Solanum tuberosum in the United States.


Subject(s)
Haplotypes , Rhizobiaceae , Solanum tuberosum , Animals , Genes, Bacterial/genetics , Plant Diseases/microbiology , Rhizobiaceae/classification , Rhizobiaceae/genetics , Solanum tuberosum/microbiology
2.
Plant Dis ; 94(5): 639, 2010 May.
Article in English | MEDLINE | ID: mdl-30754456

ABSTRACT

Carrot (Daucus carota) plants with symptoms resembling those of carrot psyllid (Trioza apicalis) damage (3,4) were observed in 14 commercial fields in southern Finland in August 2008; all cultivars grown were affected at approximately 5 to 35% symptomatic plants per field. T. apicalis, a pest of carrots in northern and central Europe, can cause up to 100% crop loss (3,4). Symptoms on affected plants included leaf curling, yellow and purple discoloration of leaves, stunted growth of shoots and roots, and proliferation of secondary roots (3,4). Given recent association of liberibacter with several annual crops affected by psyllids (1,2), an investigation on whether this bacterium is associated with symptoms of psyllid damage on carrots was conducted. Total DNA was extracted from petiole tissue of 20 symptomatic and 18 asymptomatic plants (cv. Maestro, Nanda, Nipomo, Nerac, and Fontana) sampled from 10 psyllid-infested fields in southern Finland, as well as 15 plants (cv. Primecut, Cheyenne, and Triple Play) grown from seed in an insect-free greenhouse, with the cetyltrimethylammoniumbromide (CTAB) method (2). DNA was also extracted from 10 carrot roots (cv. Nantura) of plants continuously exposed to field-collected carrot psyllid colonies in the laboratory. DNA samples were tested by PCR using primer pairs OA2/OI2c and CL514F/R to amplify a portion of 16S rDNA and rplJ/rplL ribosomal protein genes, respectively, of "Candidatus Liberibacter solanacearum" (1,2). A 1,168 bp 16S rDNA fragment was detected in DNA from 1 asymptomatic and 16 symptomatic plants and a 669 bp rplJ/rplL fragment was amplified from DNA from 19 symptomatic and 6 asymptomatic plants, indicating presence of liberibacter. DNA from all 10 root samples yielded similar amplicons with both primer pairs. DNA from all the greenhouse carrot plants yielded no amplicon. Amplicons from DNA from three petioles and three roots with each primer pair were cloned (pCR2.1-TOPO; Invitrogen, Carlsbad, CA) and three clones of each of the 12 amplicons were sequenced (MCLAB, San Francisco, CA). BLAST analysis of the 16S rDNA consensus sequences from petiole and root tissues (GenBank Accession Nos. GU373049 and GU373048, respectively) showed 99.9% identity to those of "Ca. L. solanacearum" amplified from Capsicum annuum (FJ957896) and Solanum lycopersicum (FJ957897) from Mexico, and "Ca. L. psyllaurous" from potato psyllids (EU812559). The rplJ/rplL consensus sequences from petioles and roots (GenBank Accession Nos. GU373051 and GU373050, respectively) were 97.9% identical to the analogous rplJ/rplL "Ca. L. solanacearum" ribosomal protein gene sequence from solanaceous crops in New Zealand (EU834131) and to "Ca. Liberibacter" sp. sequence from zebra chip-affected potatoes in California (FJ498803). To our knowledge, this is the first report of "Ca. L. solanacearum" associated with a nonsolanaceous species and the first report of this pathogen outside of North and Central America and New Zealand (1,2). References: (1) L. W. Liefting et al. Plant Dis. 93:208, 2009. (2) J. E. Munyaneza et al. Plant Dis. 93:552, 2009. (3) G. Nehlin et al. J. Chem. Ecol. 20:771, 1994. (4) A. Nissinen et al. Entomol. Exp. Appl. 125:277, 2007.

3.
Proc Natl Acad Sci U S A ; 96(5): 1840-5, 1999 Mar 02.
Article in English | MEDLINE | ID: mdl-10051556

ABSTRACT

Evolving levels of resistance in insects to the bioinsecticide Bacillus thuringiensis (Bt) can be dramatically reduced through the genetic engineering of chloroplasts in plants. When transgenic tobacco leaves expressing Cry2Aa2 protoxin in chloroplasts were fed to susceptible, Cry1A-resistant (20,000- to 40,000-fold) and Cry2Aa2-resistant (330- to 393-fold) tobacco budworm Heliothis virescens, cotton bollworm Helicoverpa zea, and the beet armyworm Spodoptera exigua, 100% mortality was observed against all insect species and strains. Cry2Aa2 was chosen for this study because of its toxicity to many economically important insect pests, relatively low levels of cross-resistance against Cry1A-resistant insects, and its expression as a protoxin instead of a toxin because of its relatively small size (65 kDa). Southern blot analysis confirmed stable integration of cry2Aa2 into all of the chloroplast genomes (5, 000-10,000 copies per cell) of transgenic plants. Transformed tobacco leaves expressed Cry2Aa2 protoxin at levels between 2% and 3% of total soluble protein, 20- to 30-fold higher levels than current commercial nuclear transgenic plants. These results suggest that plants expressing high levels of a nonhomologous Bt protein should be able to overcome or at the very least, significantly delay, broad spectrum Bt-resistance development in the field.


Subject(s)
Bacillus thuringiensis/genetics , Bacterial Proteins/genetics , Bacterial Toxins , Chloroplasts/physiology , Endotoxins/genetics , Moths , Nicotiana/physiology , Plants, Toxic , Animals , Bacillus thuringiensis Toxins , Bacterial Proteins/biosynthesis , Biological Assay , Endotoxins/biosynthesis , Hemolysin Proteins , Pest Control, Biological , Plants, Genetically Modified , Polymerase Chain Reaction , Recombinant Proteins/biosynthesis , Spodoptera , Nicotiana/genetics
4.
Appl Environ Microbiol ; 64(8): 2995-3003, 1998 Aug.
Article in English | MEDLINE | ID: mdl-9687463

ABSTRACT

Activated forms of Bacillus thuringiensis insecticidal toxins have consistently been found to form insoluble and inactive precipitates when they are expressed in Escherichia coli. Genetic engineering of these proteins to improve their effectiveness as biological pesticides would be greatly facilitated by the ability to express them in E. coli, since the molecular biology tools available for Bacillus are limited. To this end, we show that activated B. thuringiensis toxin (Cry1Ac) can be expressed in E. coli as a translational fusion with the minor phage coat protein of filamentous phage. Phage particles displaying this fusion protein were viable, infectious, and as lethal as pure toxin on a molar basis when the phage particles were fed to insects susceptible to native Cry1Ac. Enzyme-linked immunosorbent assay and Western blot analysis showed the fusion protein to be antigenically equivalent to native toxin, and micropanning with anti-Cry1Ac antibody was positive for the toxin-expressing phage. Phage display of B. thuringiensis toxins has many advantages over previous expression systems for these proteins and should make it possible to construct large libraries of toxin variants for screening or biopanning.


Subject(s)
Bacillus Phages/genetics , Bacillus thuringiensis/genetics , Bacterial Proteins/genetics , Bacterial Proteins/toxicity , Bacterial Toxins , Endotoxins/genetics , Endotoxins/toxicity , Insecticides , Peptide Library , Amino Acid Sequence , Animals , Bacillus thuringiensis Toxins , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacteriophage lambda/genetics , Endotoxins/chemistry , Endotoxins/metabolism , Enzyme-Linked Immunosorbent Assay , Escherichia coli/genetics , Escherichia coli/metabolism , Genetic Engineering , Genetic Vectors , Hemolysin Proteins , Immunoblotting , Molecular Sequence Data , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/toxicity
5.
J Bacteriol ; 179(17): 5414-21, 1997 Sep.
Article in English | MEDLINE | ID: mdl-9286995

ABSTRACT

We have isolated outer and inner membranes of Serpulina hyodysenteriae by using discontinuous sucrose density gradients. The outer and inner membrane fractions contained less than 1 and 2%, respectively, of the total NADH oxidase activity (soluble marker) in the cell lysate. Various membrane markers including lipooligosaccharide (LOS), the 16-kDa outer membrane lipoprotein (SmpA), and the C subunit of the F1F0 ATPase indicated that the lowest-density membrane fraction contained outer membranes while the high-density membrane fraction contained inner membranes and that both are essentially free of contamination by the periplasmic flagella, a major contaminant of membranes isolated by other techniques. The outer membrane fractions (rho = 1.10 g/cm3) contained 0.25 mg of protein/mg (dry weight), while the inner membrane samples (rho = 1.16 g/cm3) contained significantly more protein (0.55 mg of protein/mg [dry weight]). Lipid analysis revealed that the purified outer membranes contained cholesterol as a major component of the membrane lipids. Treatment of intact S. hyodysenteriae with different concentrations of digitonin, a steroid glycoside that interacts with cholesterol, indicated that the outer membrane could be selectively removed at concentrations as low as 0.125%.


Subject(s)
Brachyspira hyodysenteriae/chemistry , Cell Membrane/chemistry , Cholesterol/analysis , Lipoproteins , Bacterial Outer Membrane Proteins/analysis , Bacterial Proteins/analysis , Digitonin/pharmacology , Flagellin/analysis , Indicators and Reagents/pharmacology , Lipopolysaccharides/analysis , Membrane Lipids/analysis , Proton-Translocating ATPases/analysis
6.
Appl Environ Microbiol ; 57(10): 2816-20, 1991 Oct.
Article in English | MEDLINE | ID: mdl-1746942

ABSTRACT

Binding sites for insecticidal toxins of Bacillus thuringiensis are located in the brush border membranes of insect midguts. Two approaches were used to investigate the interactions of B. thuringiensis subsp. kurstaki HD-73 CryIA(c) toxin with brush border membrane vesicles from sensitive and naturally resistant insects: 125I-toxin-vesicle binding assays and protein blots probed with 125I-CryIA(c) toxin. In bioassays, Manduca sexta and Heliothis virescens larvae were highly sensitive, Helicoverpa zea larvae were moderately sensitive, and Spodoptera frugiperda larvae were resistant to CryIA(c) toxin. Studies of binding of 125I-CryIA(c) toxin to brush border membrane vesicles from the larval midguts revealed that all insects tested had high-affinity, saturable binding sites. Significantly, S. frugiperda larvae bind but are not killed by CryIA(c) toxin. Labeled CryIA(c) toxin incubated with protein blots identifies a major binding molecule of 120 kDa for M. sexta and 148 kDa for S. frugiperda. H. virescens and H. zea are more complex, containing 155-, 120-, 103-, 90-, and 63-kDa proteins as putative toxin-binding molecules. H. virescens also contains a minor toxin-binding protein of 81 kDa. These experiments provide information that can be applied toward a more detailed characterization of B. thuringiensis toxin-binding proteins.


Subject(s)
Bacillus thuringiensis/metabolism , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Endotoxins , Lepidoptera/microbiology , Microvilli/microbiology , Animals , Bacillus thuringiensis/growth & development , Bacillus thuringiensis Toxins , Binding, Competitive , Blotting, Western , Digestive System/metabolism , Digestive System/microbiology , Hemolysin Proteins , Lepidoptera/metabolism , Microvilli/metabolism , Moths/metabolism , Moths/microbiology , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...